Answer:62.66°C or 235.66K
Explanation:Q=McpT, the energy was given in calories so you first convert to Joules by multiplying the value in calories by 4.184J.
17*4.184=71.128kJ.
71.128kJ=mcpT
71.128kJ=245*4.187*(T-Tm)
Tm is the final temperature of the mixture. The T is the temperature given which should be converted to Kelvin by adding 273...T=32+273=305K.
71128J=245*4.187*(305-Tm)
71128=312873.575-1025.815Tm
1025.815Tm=312873.575-71128
1025.815Tm=241745.58
Tm=241745.58/1025.815
Tm=235.66K
Heat= latent heat of fusion+sensible heat+ latent heat of vapourization
=(79.7*5)+(5*100*1)+(540*5)
=3598.5 cal
Answer:
When two forces are the same strength but act in opposite direction, they are called balanced forces. Again, tug-of-war is a perfect example. If the people on each side of the rope are pulling with the same strength, but in the opposite direction, the forces are balanced. The result is no motion.
Explanation:
Hope this helps!
To find - Identify what kind of ligand (weak or strong), what kind
of wavelength (long or short), what kind of spin (high spin or
low spin) and whether it is paramagnetic or diamagnetic for
the following complexes.
1. [Mn(CN)6]4-
2. [Fe(OH)(H2O)5]2
3. [CrCl4Br2]3-
Step - by - Step Explanation -
1.
[Mn(CN)⁶]⁴⁻ :
Ligand - Strong
Wavelength - Short
Spin - Low spin
Number of unpaired electrons = 1 ∴ paramagnetic.
2.
[Fe(OH)(H₂O)₅]²⁺ :
Ligand - Weak ( both OH⁻ and H₂O )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 5 ∴ paramagnetic.
3.
[CrCl₄Br₂]³⁻ :
Ligand - Weak ( both Br⁻ and Cl⁻ )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 3 ∴ paramagnetic.
This question includes four answer choices:
A. definite volume, highest molecular motion, highest kinetic energy
B. indefinite volume, least molecular motion, highest kinetic energy
C. definite volume, least molecular motion, lowest kinetic energy
D. definite volume, no molecular motion, lowest kinetic energy
Solids do not have the highest molecular motion (on the contrary they have the least molecular motion), so you can discard option A. Solids have a definite volume and the highest kinetic energy (given that they have the least molecular motion), so you discard option C. Molecules always have a vibrational motion, so you discard option D. Option C, have only characteristics that correctly describes a solid: definite volume, least molecular motion, lowest kinetic energy. Therefore, the answer is the option C.
<span /><span>
</span>