The reduction of a less active metal by a more active one is called metal displacement reactions. For example:
Fe + CuSO4 → FeSO4 + Cu
<h3>What is metal displacement reaction? </h3>
Displacement reactions is a reaction which includes a metal and the compound of a other metal. A more reactive metal will push or displace out a less reactive metal from its compound in this displacement reaction. The metal which is less reactive left uncombined after the reaction.
As we know that, electrons are the basis of the chemical reactions. If chemical compound or element A is more easily oxidized than B, then according to the terms of the activity series, the elements which are more easily oxidized can react with more chemicals, since they are able to act as a reducing agents for more chemicals.
Since, Metal ions are positively charged ions as they lose electrons. Some metals give up their electrons more readily than others and become more reactive.
Thus, we concluded that the reduction of a less active metal by a more active one is called metal displacement reactions. For example:
Fe + CuSO4 → FeSO4 + Cu
learn more about metal displacement reaction:
brainly.com/question/11777638
#SPJ4
Answer:
In an experiment, a student transferred 4.50 mL of a liquid into a pre-weighed beaker (the weight of which was determined to be 35.986 g ).
Explanation:
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>
<em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em>
CH3COH(CH3)2; (CH3)3COH is the answer. Please let me know if this helps.
Explanation:
Mole ratio of Zn to HCl = 1 : 2.
If we use all 2.0mol of Zn, we would need 2.0 * 2 = 4.0mol of HCl. However we only have 3.0mol of HCl.
Therefore HCl is limiting.
all the elements in group 18 are Nobel gases or inert gases . all the elements such as neon , helium, argon etc. ,their outermost shell is completely filled . The noble gases have the largest ionization energies, reflecting their chemical inertness