Non-polar covalent
Explanation:
Propane is made up of non-polar covalent bonds and it can be expected to dissolve in hexane and to not dissolve in water.
Propane is an hydrocarbon gas.
It forms by sharing of electrons between two atoms with very low electronegativity differences.
This differences results in equal sharing of the shared electron. Therefore they form a non-polar covalent bond.
Water is a polar covalent compound and cannot dissolve compounds that are not polar like propane.
Propane will only dissolve in a like substance like hexane which is equally non-polar.
learn more:
Covalent compounds brainly.com/question/3109255
#learnwithBrainly
Temperature can change a reaction rate because adding or taking away heat means energy is being added or taken away. When energy is added, the particles speed up, so there is a greater chance of the reactants colliding to form the products, which increases the reaction rate. When energy is taken away, the particles more slower, so they don't collide as easily, which slows down the reaction rate.
Therefore, the answer is D.
Water is neutral with ph 7. when we add water to acidic solution, it will be less acidic. so the pH of acid increases
Answer:
See explanation
Explanation:
When either pan is heated, energy is transferred via conduction. Conduction is the process by which heat is transferred through a material, the average position of the particles remaining the same.
When the pans are heated, the particles in each pan vibrate faster and transfer this energy rapidly to neighboring particles.
The pan with a thicker base has more particles in it than the pan with lighter weight base. Note that, The rate of heat transfer is inversely proportional to the thickness of the material in question. Hence, the thicker the base, the more the number of particles present and the longer the time it takes for the food to cook.
Answer:
m = 50.74 kg
Explanation:
We have,
Initial temperature of water is 20 degrees Celsius
Final temperature of water is 46.6 degrees Celsius
Heat absorbed is 5650 J
It is required to find the mass of the sample. The heat absorbed is given by the formula ad follows :

c is specific heat of water, c = 4.186 J/g°C
So,

So, the mass of the sample is 50.74 kg.