Answer:
For your first question, Curium does not occur naturally on Earth, meaning that it is not produced naturally on Earth. However, it can be formed in nuclear reactors.
For your second question, Curium has been used to provide power to electrical equipment used on space missions, but doesn't seem to be that important overall.
Explanation:
Hope this helped!
Hey there!
* Converts 1750 dm³ in liters :
1 dm³ = 1 L so 1750 dm³ = 1750 liters
* Convertes 125,000 Pa in atm :
1 Pa = 9.86*10⁻⁶ atm so 9.86*10⁻⁶ / 125,000 => 1.233 atm
* Convertes 127ºC in K :
127 + 273.15 => 400.15 K
R = 0.082 atm.L/mol.K
Finally, it uses an equation of clapeyron :
p * V = n * R * T
1.233 * 1750 = n * 0.082 * 400.15
2157.75 = n * 32.8123
n = 2157.75 / 32.8123
n = 65.76 moles
hope this helps!
I believe your answer would be the first one
hope this helps
Answer : The concentration of
is, 
Explanation :
When we assume this reaction is driven to completion because of the large excess of one ion then we are assuming limiting reagent is
and
is excess reagent.
First we have to calculate the moles of KSCN.


Moles of KSCN = Moles of
= Moles of
= 
Now we have to calculate the concentration of ![[Fe(SCN)]^{2+}](https://tex.z-dn.net/?f=%5BFe%28SCN%29%5D%5E%7B2%2B%7D)
![\text{Concentration of }[Fe(SCN)]^{2+}=\frac{\text{Moles of }[Fe(SCN)]^{2+}}{\text{Volume of solution}}](https://tex.z-dn.net/?f=%5Ctext%7BConcentration%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%7D%7B%5Ctext%7BVolume%20of%20solution%7D%7D)
Total volume of solution = (6.00 + 5.00 + 14.00) = 25.00 mL = 0.025 L
![\text{Concentration of }[Fe(SCN)]^{2+}=\frac{1.08\times 10^{-5}mol}{0.025L}=4.32\times 10^{-4}M](https://tex.z-dn.net/?f=%5Ctext%7BConcentration%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%3D%5Cfrac%7B1.08%5Ctimes%2010%5E%7B-5%7Dmol%7D%7B0.025L%7D%3D4.32%5Ctimes%2010%5E%7B-4%7DM)
Thus, the concentration of
is, 
4Al(s) + 3O2(g) --> 2Al2O3(s) This is the balanced.
From the equation:
4 moles of Al required 3 moles of O2 to produce 2 moles of Al2O3
3 moles of O2 reacted with 4 moles of Al to produce 2 moles of Al2O3
1 mole of O2 reacted with 4/3 moles of Al to produce 2/3 moles of Al2O3 (Divide by 3)
4.5 moles of O2 reacted with (4/3 *4.5) moles of Al to produce (2/3*4.5) moles of Al2O3
4.5 moles of O2 reacted with 6moles of Al to produce 3moles of Al2O3
(3) is the answer. 6 mol of Al.