Answer:
Any object moving in a circle (or along a circular path) experiences a centripetal force. That is, there is some physical force pushing or pulling the object towards the center of the circle. This is the centripetal force requirement.
Explanation:
Answer:

Explanation:
(The following exercise is written in Spanish and for that reason explanation will be held in Spanish)
Supóngase que el planeta tiene una órbita circular, el período de rotación del planeta es:

Asimismo, la rapidez angular se describe como función de la aceleración centrípeta:

Ahora se reemplaza en la ecuación de período:

La aceleración experimentada por el planeta es:

Se reemplaza en la ecuación de período:

La distancia del planeta con respecto al sol es finalmente despejada:

![R = \sqrt[3]{G\cdot M_{sun}\cdot \left(\frac{T}{2\pi} \right)^{2}}](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7BG%5Ccdot%20M_%7Bsun%7D%5Ccdot%20%5Cleft%28%5Cfrac%7BT%7D%7B2%5Cpi%7D%20%5Cright%29%5E%7B2%7D%7D)
Finalmente, se sustituyen las variables y se determina la distancia:
![R = \sqrt[3]{\left(6.674\times 10^{-11}\,\frac{N\cdot m^{2}}{kg^{2}} \right)\cdot (1.989\times 10^{30}\,kg)\cdot \left[\frac{(65\,a)\cdot \left(365\,\frac{d}{a} \right)\cdot \left(86400\,\frac{s}{d} \right)}{2\pi} \right]^{2}}](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%5Cleft%286.674%5Ctimes%2010%5E%7B-11%7D%5C%2C%5Cfrac%7BN%5Ccdot%20m%5E%7B2%7D%7D%7Bkg%5E%7B2%7D%7D%20%5Cright%29%5Ccdot%20%281.989%5Ctimes%2010%5E%7B30%7D%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cfrac%7B%2865%5C%2Ca%29%5Ccdot%20%5Cleft%28365%5C%2C%5Cfrac%7Bd%7D%7Ba%7D%20%5Cright%29%5Ccdot%20%5Cleft%2886400%5C%2C%5Cfrac%7Bs%7D%7Bd%7D%20%5Cright%29%7D%7B2%5Cpi%7D%20%5Cright%5D%5E%7B2%7D%7D)


As wavelength increase, frequency decrease
The entire mass of the Earth at neutron star density would fit into a sphere of 305 m in diameter
Answer:
Vertex: Point where the principal axis and mirror meet
Focal point: Point we are reflected light converges or appears to diverge
Focal length: distance from the center of a mirror to the focal point
Principal axis: line that runs to the center of curvature to a mirror
Center of curvature: sensor of spherical mirror from which a curved mirror was cut
Explanation:
Just did the assignment on Edge.