The kinetic energy is 945 joules.
Kinetic energy is the energy that an object has as a result of motion. It is defined as the effort required to accelerate a mass-determined body from rest to the indicated velocity.
The speed of an object or particle, which is a scalar quantity, is the size of the change in its location over time or the size of the change in its position per unit of time.
The mass of the volleyball is 2.1 kg.
The speed of the ball when the ball leaves the hand is 30 m/s.
m = 2.1 kg
v = 30 m/s
The kinetic energy of an object is given as:
KE = (1/2 ) × m × v²
KE = (1 / 2) × 2.1 kg × ( 30 m/s)²
KE = (1 / 2) × 2.1 kg × 30 m/s × 30 m/s
KE = 2.1 kg × 15 m/s × 30 m/s
KE = 945 J
Learn more about kinetic energy here:
brainly.com/question/8101588
#SPJ9
Answer:
c. 2 MeV.
Explanation:
The computation of the binding energy is shown below
![= [Zm_p + (A - Z)m_n - N]c^2\\\\=[(1) (1.007825u) + (2 - 1 ) ( 1.008665 u) - 2.014102 u]c^2\\\\= (0.002388u)c^2\\\\= (.002388) (931.5 MeV)\\\\=2.22 MeV](https://tex.z-dn.net/?f=%3D%20%5BZm_p%20%2B%20%28A%20-%20Z%29m_n%20-%20N%5Dc%5E2%5C%5C%5C%5C%3D%5B%281%29%20%281.007825u%29%20%2B%20%282%20-%201%20%29%20%28%201.008665%20u%29%20-%202.014102%20u%5Dc%5E2%5C%5C%5C%5C%3D%20%280.002388u%29c%5E2%5C%5C%5C%5C%3D%20%28.002388%29%20%28931.5%20MeV%29%5C%5C%5C%5C%3D2.22%20MeV)
= 2 MeV
As 1 MeV = (1 u) c^2
hence, the binding energy is 2 MeV
Therefore the correct option is c.
We simply applied the above formula so that the correct binding energy could come
And, the same is to be considered
The student who did the most work is student 2 with 2500 Joules.
<u>Given the following data:</u>
To determine which of the students did the most work:
Mathematically, the work done by an object is given by the formula;

<u>For </u><u>student 1</u><u>:</u>

Work done = 600 Joules
<u>For </u><u>student 2</u><u>:</u>

Work done = 2500 Joules.
Therefore, the student who did the most work is student 2 with 2500 Joules.
Read more: Read more: brainly.com/question/13818347
Answer:
induced EMF = 240 V
and by the lenz's law direction of induced EMF is opposite to the applied EMF
Explanation:
given data
inductance = 8 mH
resistance = 5 Ω
current = 4.0 A
time t = 0
current grow = 4.0 A to 10.0 A
to find out
value and the direction of the induced EMF
solution
we get here induced EMF of induction is express as
E = - L
...................1
so E = - L 
put here value we get
E = - 8 ×

E = -40 × 6
E = -240
take magnitude
induced EMF = 240 V
and by the lenz's law we get direction of induced EMF is opposite to the applied EMF
Answer:
Granite is durable, as it is hard and tough.
Gneiss has resistance to pressure and mechanical impacts
Explanation:
Granite is an igneous rock. It is mostly used in building works and construction because they are very durable. They are hard and tough and they have no internal structures.
Gneiss is used for flooring, ornamental stone, tombstones because of the fact that it shows resistances to pressure and also mechanical impacts.
<u>how they are formed in nature:</u>
In nature, granite is formed from the cooling down of hot molten magma and it's solidification before it reaches the surface of the earth.
In nature, gneiss is as a result of igneous rock or sedimentary rocks metamorphosing. Gneiss and granite are kind of similar. When subjected to great heat, granite becomes gneiss