1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
14

Assuming that 70 percent of the Earth’s surface

Physics
1 answer:
Aneli [31]3 years ago
3 0
We need to find the volume of a spherical shell with a radius of
6.37 million meters and a thickness of 0.95 mile.

The technically correct way to do this is to find the volume of the
outside of the shell, then find the volume of the inside of the shell,
and subtract the inside volume from the outside volume.  That's
the REAL way to do it.

But look.  This 'shell' (the 0.95 mile of water) is only about  1530 meters thick,
on a sphere with a radius of 6.37 million meters.  The depth of the water is like
0.024 percent of the radius !  There's not a whole lot of difference between the
sphere outside the water and the sphere inside it.

So I want to do this problem the easier way ... Let's say that the volume
of the water is going to be

                  (the surface area that it covers on the Earth)
         times
                  (the thickness of the coating of water) .

The area of a sphere is  4 pi Radius² .
That's
                         (4 pi) x (6.37 x 10⁶ m)²

                   =    (4 pi) x (40.58 x 10¹² m²)

We're only interested in 70% of the total surface area.

                   =   (0.7) x (4 pi) x (40.58 x 10¹²) m²

                   =            3.57 x 10¹⁴  square meters of Earth's surface.

The volume of the water covering that area is

               (the area) times (average depth of 0.95 mile) .

We have to change that 0.95 mile to meters.
The question reminds us that                         1 mile = 1609 meters .    
So the volume of the water is

                      (the area) times (0.95 x 1609 meters).

But we're not there yet.  The question isn't asking for the volume.
It's asking for the mass of the water. 
We're ready to get the volume in cubic meters.
We're supposed to know that each cubic meter is 1,000 liters,
   and the mass of 1 liter of water is 1 kilogram.
So each cubic meter of volume is 1,000 kilograms of mass.

Now we're ready to dump all the numbers into the machine and
turn the crank.  The mass of all this water will be

         (the surface area) x (0.95 x 1609 meters) x (1,000 kg/m³)   

  =    (3.57 x 10¹⁴  m²)  x   (1528.6 m)  x  (1,000 kg/m³)

  =            5.457 x 10²⁰ kilograms .

This is my answer, and I'm stickin to it.

But ... just like all the other problems you get in high school, the
answer doesn't matter.  The teacher doesn't need the answer,
and YOU don't need the answer.  The reason you got this problem
for an assignment is to give you practice in HOW TO FIND the
answer ... how to plan what you're going to do with the problem,
and then how to carry it out.

I don't know how much effort you put into this problem, but somewhere
along the way, you chickened out and posted it on Brainly.  So far, the
result of that decision was:  The person who got all the practice was ME.
I got the good stuff, and all YOU got was the answer.

I hope my work is clear enough that you can go through it, and pick up
some of the good stuff for yourself.
You might be interested in
How does lithium react with cold water?
Tomtit [17]
Lithium metals reacts slowly with water to form a colourless solution of lithiums hydroxide (LiOH) and hydrogen gas (H2). The resulting solution is basic because of the dissolved hydroxide. The reaction is exothermic, but the reaction is slower than that of sodium (immediately below lithium in the periodic table)

5 0
3 years ago
Read 2 more answers
A particle with charge − 2.74 × 10 − 6 C −2.74×10−6 C is released at rest in a region of constant, uniform electric field. Assum
s2008m [1.1K]

Answer:

241.7 s

Explanation:

We are given that

Charge of particle=q=-2.74\times 10^{-6} C

Kinetic energy of particle=K_E=6.65\times 10^{-10} J

Initial time=t_1=6.36 s

Final potential difference=V_2=0.351 V

We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.

We know that

qV=K.E

Using the formula

2.74\times 10^{-6}V_1=6.65\times 10^{-10} J

V_1=\frac{6.65\times 10^{-10}}{2.74\times 10^{-6}}=2.43\times 10^{-4} V

Initial voltage=V_1=2.43\times 10^{-4} V

\frac{\initial\;voltage}{final\;voltage}=(\frac{initial\;time}{final\;time})^2

Using the formula

\frac{V_1}{V_2}=(\frac{6.36}{t})^2

\frac{2.43\times 10^{-4}}{0.351}=\frac{(6.36)^2}{t^2}

t^2=\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}

t=\sqrt{\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}}

t=241.7 s

Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.

6 0
3 years ago
A ball rolls for 8 seconds and travels 24 meters. How fast was it traveling?
belka [17]

Answer:

The speed of the ball was, v = 3 m/s

Explanation:

Given data,

The time period of the ball, t = 8 s

The distance the ball rolled, d = 24 m

The velocity of an object is defined as the object's displacement to the time taken. The formula for the velocity is,

                              v = d / t      m/s

Substituting the given values in the above equation,

                               v = 24 / 8

                                  = 3 m/s

Hence, the speed of the ball was, v = 3 m/s

8 0
3 years ago
What quantity of heat is needed to convert 1 kg of ice at -13 degrees C to steam at 100 degrees C?
Effectus [21]

Answer:

Heat energy needed = 3036.17 kJ

Explanation:

We have

     heat of fusion of water = 334 J/g

     heat of vaporization of water = 2257 J/g

     specific heat of ice = 2.09 J/g·°C

     specific heat of water = 4.18 J/g·°C

     specific heat of steam = 2.09 J/g·°C

Here wee need to convert 1 kg ice from -13°C to vapor at 100°C

First the ice changes to -13°C from 0°C , then it changes to water, then its temperature increases from 0°C to 100°C, then it changes to steam.

Mass of water = 1000 g

Heat energy required to change ice temperature from -13°C to 0°C

          H₁ = mcΔT = 1000 x 2.09 x 13 = 27.17 kJ

Heat energy required to change ice from 0°C to water at 0°C

          H₂ = mL = 1000 x 334 = 334 kJ

Heat energy required to change water temperature from 0°C to 100°C  

          H₃ = mcΔT = 1000 x 4.18 x 100 = 418 kJ    

Heat energy required to change water from 100°C to steam at 100°C  

          H₄ = mL = 1000 x 2257 = 2257 kJ    

Total heat energy required

          H = H₁ +  H₂ + H₃ + H₄ = 27.17 + 334 + 418 +2257 = 3036.17 kJ

Heat energy needed = 3036.17 kJ

5 0
3 years ago
If you toast a piece of bread then spread butter onto the warm piece of toast, what would be the physical change occurring? What
slamgirl [31]
Wouldn’t it be from a solid to a liquid
8 0
2 years ago
Other questions:
  • Which of the following statements about ycarrier(x,t) is correct?
    5·1 answer
  • A ladybug sits 14 cm from the center of a turntable spinning at 33.33 rpm. The Sun is shining horizontally through the window an
    10·1 answer
  • A mass spectrometer was used in the discovery of the electron. In the velocity selector, the electric and magnetic fields are se
    11·1 answer
  • Diferencia entre transferencia y transformación de energía. Da ejemplos de cada caso.
    9·1 answer
  • What is the formula for calculating the efficiency of a heat engine? Answers:
    9·1 answer
  • An instrument used to detect a static electric charge is called an
    7·2 answers
  • 3
    9·1 answer
  • A certain digital camera having a lens with focal length 7.50 cmcm focuses on an object 1.70 mm tall that is 4.70 mm from the le
    7·1 answer
  • Two drums of the same size and same height are taken.
    5·1 answer
  • Two shuffleboard disks of equal mass, one orange and the other yellow, are involved in an elastic, glancing collision. The yello
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!