Answer:
false : In distance time graph,time is shown on the x -axis
Answer:
The magnitude of the force that each wire exerts on the other will increase by a factor of two.
Explanation:
force on parallel current carrying wire, F = BILsinθ
where;
B is the strength of the magnetic field
L is the length of the wire
I is the magnitude of current on the wire
θ is the angle of inclination of the wire
Assuming B, L and θ is constant, then F ∝ I
F = kI

When the amount of current is doubled in one of the wires, lets say the second wire;

Also, if will double the amount of current on the first wire, then
F₁ = 2F₂
Therefore, the magnitude of the force that each wire exerts on the other will increase by a factor of two.
Answer:
E_Phase = 560V
Explanation:
The computation of the voltage i.e. dropped across each phase is shown below:
Given that
The delta connection line voltage is
E_line = 560 V
And, in the case of delta connection, the line voltage would be equivalent to the phase voltage
That means
E_Phase = E_Line
= 560 V
Hence, the voltage i.e. dropped across each phase is
E_Phase = 560V
But the fact is that an accelerating object is an object that is changing it’s velocity.. for this reason , it can be safely concluded that an object moving in a circle at constant speed is indeed accelerating. It is accelerating because the direction of the velocity vector is changing .
We have that the maximum rank of the kangaroo is given by:
R = v0 ^ 2 sin (2θ) / g
where,
v0 = initial velocity
θ = angle of the velocity vector formed from the horizontal
g = gravity
Clearing the speed we have:
v0 ^ 2 = (R * g) / (sin (2θ))
Substituting values
v0 = root (((11) * (9.8)) / (sin (2 (21 * (pi / 180)))))
v0 = 12.69 m / s
answer
its takeoff speed is 12.69 m / s