Answer: -33.3 * 10^9 C/m^2( nC/m^2)
Explanation: In order to solve this problem we have to use the gaussian law, the we have:
Eoutside =0 so teh Q inside==
the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.
Then we simplify and get
σ= -4.6/(2*π*b)= -33.3 nC/m^2
44.64m
Explanation:
Given parameters:
Mass of the car = 1500kg
Initial velocity = 25m/s
Frictional force = 10500N
Unknown:
Distance moved by the car after brake is applied = ?
Solution:
The frictional force is a force that opposes motion of a body.
To solve this problem, we need to find the acceleration of the car. After this, we apply the appropriate motion equation to solve the problem.
-Frictional force = m x a
the negative sign is because the frictional force is in the opposite direction
m is the mass of the car
a is the acceleration of the car
a = = = -7m/s²
Now using;
V² = U² + 2as
V is the final velocity
U is the initial velocity
a is the acceleration
s is the distance moved
0² = 25² + 2 x 7 x s
0 = 625 - 14s
-625 = -14s
s = 44.64m
learn more:
Velocity problems brainly.com/question/10932946
#learnwithBrainly
Since, F = k . ∆x
Therefore, k = F / ∆x = 250 / 0.2 = 1250 N/m
(ps: convert 20 cm into 0.2 m)
Answer: $85.80
Explanation: 100kg is equalvilent to 220 lbs, then you multiply 220 by .39 and then you have your answer :)