To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
Answer:
His gravitational potential energy will increase as well.
Explanation:
Let gpe represent gravitational potential energy.
gpe = mass × gravitational field strength × height
From the formula above, we can conclude that as the mass of a body increases, it's gpe increases too.
Answer:
Slope = 2 m / 10 m = 1/5
For every 5 m of effort the object will be raised 1 m
W = work done on object = M g h increase in PE of object
E S = W where E is effort and S the distance thru which the effort acts
E S = M g H
E = 100 kg * 9.8 m/s^2 * 2 m / 10 m = 196 kg m / s^2 = 196 N
Check: total work = 2 * 9.8 * 100 = 1960 J
Force Needed = 1960 J / 2 m = 980 Newtons
Mechanical advantage = 980 / 196 = 5 as one would expect since the object is raised 1 m for every 5 m of force input
Answer:
Explanation:
Volume of the insulating shell is,
Charge density of the shell is,
Here,
B)
The electric field is
For 0 <r<R the electric field is zero, because the electric field inside the conductor is zero.
C)
For R <r <2R According to gauss law
substitute
D)
The net charge enclosed for each r in this range is positive and the electric field is outward
E)
For r>2R
Charge enclosed is zero, so electric field is zero
Answer:
mass-to-light ratio is the ratio of the mass of a body and the light output it has. it is represented by in terms of a single number and and tells us about the kind of stars making up the most luminous population in a galaxy. the mass-to-ratio of stars is greater than 1, for dark matter is 100 times high and very low for dust. higher mass-to-ratio mean that in a galaxy on average every solar mass emits a light less than the sun of the earth solar system does.
the large mass-to-light ratio shows that gas and dust is being analyzed.