Answer: 3.75 m
Explanation:
5 squirts in 1 second
So, 1 squirt in 1/5 second which is 0.2 second.
The difference in timing of two consecutive squirt is 0.2 second, so
time (t) = 0.2 s.
speed (s) = 15 m/s
Distance of separation (d) = ?
Now, formula for distance is
d = s × t
d = 15 × 0.2
d = 3.75 m
The center of mass is given with this formula:

Velocity is:

So, for the velocity of the center of mass we have:

In our case it is:
The appropriate response is Zero degrees. The beam will leave the two mirrors along a way parallel to the one it came in on. This is the guideline of the corner reflector, which is frequently utilized as a radar target. Take note of that the corner reflector utilizes three reflecting surfaces (that are set up at 90o from each other) rather than the two like are being utilized here. Wikipedia has a truly awesome drawing that shows this two-dimentional issue pleasantly. A moment connection is given to the article on the corner reflector and the 3-D angles.
Answer:
The distance the bungee cord that would be stretched 0.602 m, should be selected when pulled by a force of 380 N.
Explanation:
As from the given data
the length of the rope is given as l=30 m
the stretched length is given as l'=41m
the stretched length required is give as y=l'-l=41-30=11m
the mass is m=95 kg
the force is F=380 N
the gravitational acceleration is g=9.8 m/s2
The equation of k is given by equating the energy at the equilibrium point which is given as

Here
m=95 kg, g=9.8 m/s2, h=41 m, y=11 m so

Now the force is
or

So here F=380 N, k=630.92 N/m

So the distance is 0.602 m