(1)
Cheetah speed: 
Its position at time t is given by
(1)
Gazelle speed: 
the gazelle starts S0=96.8 m ahead, therefore its position at time t is given by
(2)
The cheetah reaches the gazelle when
. Therefore, equalizing (1) and (2) and solving for t, we find the time the cheetah needs to catch the gazelle:



(2) To solve the problem, we have to calculate the distance that the two animals can cover in t=7.5 s.
Cheetah: 
Gazelle: 
So, the gazelle should be ahead of the cheetah of at least

As we sit in a chair, Action force will be only in one direction and that direction would be downward only.
In short, Your Answer would be Option A
Hope this helps!
As the steam touches the skin, it undergoes a phase change and releases latent heat due to the phase change. As it reaches equilibrium, it releases sensible heat. We calculate as follows:
Q = latent heat + sensible Heat
Q = 2.26 kJ / g (50.0 g) + 50.0 g ( 4.18 J / g C) (37 C - 100 C) ( 1 kJ / 1000 J)
Q = 99.833 kJ
Answer:
1 C
Explanation:
The intensity of electric current is defined as

where
I is the current
q is the amount of charge transferred
t is the time interval during which the charge is transferred
For the lightning in this problem, we have
is the current
is the time interval
Solving the formula for q, we find the amount of charge transferred:
