6 protons, 6 neutrons, and 5 electrons
Answer:Two more hydrogen atoms will be required
Explanation:
A carbon atom has 4 valence electrons in its outermost shell,thus it can form 4 covalent bonds.Two pairs of electrons are shared in a double bond between C-C atom.two more electrons are left which is shared with two hydrogen atoms.
Answer: (C) Vaporizing
Explanation:
Vaporization is the process in which the substance change the state of of liquid into the gas state.
The vaporization process require the largest input of the energy as when the state is in the solid state then, the solid substances contain the strong forces of the attraction and they require high energy to break these strong bonds.
For changing the liquid state into the gases state we require to overcome the surface tension and require enough energy for acquiring the vaporization state.
Therefore, option (C) is correct.
The compound solubility which will not be affected by a low pH in solution is AgBr.
<h3>What is pH?</h3>
pH is a measure of the acidity or basicity of any solution and according to the pH scale 0 to 6.9 shows the acidity, 7 is neutral and 7.1 to 14 shows the basicity of any solution.
- AgBr is sparingly soluble in water and not soluble in acids, so if we low the pH of the solution towards the acidity its solubility not affected.
- NiCO₃ is a basic salt and and shows solubility in the acidic medium so change in pH will affect its solubility.
- Co(OH)₂ it is also a basic compound and shows its solubility in the acidic medium and get affected when change in pH takes place.
- PbF₂ is a strong base and also shows solubility in the acidic medium easily, so get affected when change in pH takes place.
- In CuS, sulphide is basic ion and whole compound shows solubility in the acidic medium and get affected when low pH of solution takes place.
AgBr is not affected by a low pH in solution.
To know more about solubility, visit the below link:
brainly.com/question/23946616
Answer:
The correct answer is: Ka= 5.0 x 10⁻⁶
Explanation:
The ionization of a weak monoprotic acid HA is given by the following equilibrium: HA ⇄ H⁺ + A⁻. At the beginning (t= 0) we have 0.200 M of HA. Then, a certain amount (x) is dissociated into H⁺ and A⁻, as is detailed in the following table:
HA ⇄ H⁺ + A⁻
t= 0 0.200 M 0 0
t -x x x
t= eq 0.200M -x x x
At equilibrium, we have the following ionization constant expression (Ka):
Ka= ![\frac{ [H^{+}] [A^{-} ]}{ [HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BH%5E%7B%2B%7D%5D%20%20%5BA%5E%7B-%7D%20%5D%7D%7B%20%5BHA%5D%7D)
Ka= 
Ka= 
From the definition of pH, we know that:
pH= - log [H⁺]
In this case, [H⁺]= x, so:
pH= -log x
3.0= -log x
⇒x = 10⁻³
We introduce the value of x (10⁻³) in the previous expression and then we can calculate the ionization constant Ka as follows:
Ka=
=
= 5.025 x 10⁻⁶= 5.0 x 10⁻⁶