Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
The correct option is D.
The hydrogen atoms that are attached to the nitrogen atom in the ammonia molecule are capable of forming hydrogen bond. The hydrogen bond that exist in the ammonia molecule is the reason why it shows higher boiling point compare to the other hydrides. Hydrogen bond occur in ammonia because ammonia is one of the most electronegative elements.
I believe the answer is A, if they have a stronger connection lower the vapor pressure so higher the boiling point
Answer:
i dont no ehh ahh i answer this question and this question is an dibitual sence
Explanation:
ahahalsbaowvapnavskqleveywpwndvsmavalsnsbalsmbsiabsopqmgdijsbsiwbskwnvskabhsksn
mabahslambbsoalnqnmlpigfqjskbdnmxnxb slabslwobdksjwmsnmaksbkakskslanksoqlmmbsjpqloyewqasfhjllmvxxwtyipeorirubamsbsmsnsmsoandbaksnsgaks