The sample of argon gas that has the same number of atoms as a 100 milliliter sample of helium gas at 1.0 atm and 300 is 100. mL at 1.0 atm and 300. K
The correct option is D.
<h3>What is the number of moles of gases in the given samples?</h3>
The number of moles of gases in each of the given samples of gas is found below using the ideal gas equation.
The ideal gas equation is: PV/RT = n
where;
- P is pressure
- V is volume
- n is number of moles of gas
- T is temperature of gas
- R is molar gas constant = 0.082 atm.L/mol/K
Moles of gas in the given helium gas sample:
P = 1.0 atm, V = 100 mL or 0.1 L, T = 300 K
n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
For the argon gas sample:
A. n = 1 * 0.05 / 0.082 * 300
n = 0.00203 moles
B. n = 0.5 * 0.05 / 0.082 * 300
n = 0.00102 moles
C. n = 0.5 * 0.1 / 0.082 * 300
n = 0.00203 moles
D. n = 1 * 0.1 / 0.082 * 300
n = 0.00406 moles
Learn more about ideal gas equation at: brainly.com/question/24236411
#SPJ1
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
Answer: The fourth material that is added to the blast furnace is HOT AIR which provides OXYGEN for used for combustion of carbon (Coke).
Explanation:
Iron is the second most abundant metal found in the earth's crust after aluminium. It is not found in the free metallic state but are extracted from rocks which are rich in iron that contains other materials. These are known are iron ores and the most common iron ores are haematite ( Fe2O3).
Iron can be extracted from its ore with the used of blast furnace. The materials used for extraction of iron includes:
--> Coke
--> haematite( iron ore)
--> limestone and
--> Hot air.
The iron ore is first roasted in air so that iron(III)oxide is produced. The iron(III)oxide is then mixed with coke and limestone and heated to a very high temperature. Hot air is introduced into it from the bottom of the furnace. The coke is oxidizes the the oxygen in the hot air blast to liberate carbondioxide.
The molecular formula of the compound that has a percent composition of 38.7% carbon, 9.76% hydrogen, 51.5% oxygen is C2H6O2.
<h3>How to calculate molecular formula?</h3>
The molecular formula can be calculated from the empirical formula. The empirical formula of the compound is calculated as follows:
- C = 38.7% = 38.7g
- H = 9.76% = 9.76g
- O = 51.5% = 51.5g
Next, we convert the mass to moles by dividing by their atomic mass:
- C = 38.7 ÷ 12 = 3.23mol
- H = 9.76 ÷ 1 = 9.76mol
- O = 51.5÷ 16 = 3.22mol
Next, we divide by the smallest (3.22)
Hence, the empirical formula of the compound is CH3O
If the molar mass of the compound is 62g/mol;
(CH3O)n = 62
31n = 62
n = 2
(CH3O)2 = C2H6O2
Therefore, the molecular formula of the compound that has a percent composition of 38.7% carbon, 9.76% hydrogen, 51.5% oxygen is C2H6O2.
Learn more about molecular formula at: brainly.com/question/14425592
Answer:
The answer is C, both krypton and neon.
Explanation:
I got the answer wrong and my teacher told me that c is the right answer choice