Answer:
None of the above
Explanation:
The (−OH) group on phenol can form hydrogen bonds, and the −CH3 group on toluene cannot.
Phenol has only one hydrogen on the −OH group available to form hydrogen bonds, so the hydrogen bond is stronger. In toluene, the hydrogen bond is spread over all three hydrogens on the methyl group, so the interaction is weaker overall.
Phenol has a higher molecular mass than toluene.
Answer:
No, assuming that the salt/sugar is already dissolved
Explanation:
As long as the particle size is too big, it won't filter through. Therefore, if it is dissolved, it will pass through the filter.
If you were to throw rocks in there or something, and they are non-dissolvable, then yes.
Answer:
No, CCl₄ is 4 covalent C-Cl single bonds with a Tetrahedral geometry.
Explanation:l
For resonance structures to exist the molecule must have alternating single-double bonds. H₂C = CH - CH₃ <=> H₃C - CH = CH₂ resents a simple compound with a resonance structure system. This means that the π-bond electrons are distributed across all carbons in the molecular backbone. I would recommend internet searching for Danial Weeks 'Pushing Electrons' for a comprehensive review of molecular resonance structures. It is a brief, but easy to follow treatment of simple to complex structures containing resonance systems.
Hope this helps. Doc :-)
Answer: Every enzyme has a specific name that can give us insight into the specific reaction that that enzyme can catalyze. We divide them into six different categories.
1) Oxidoreductase - includes two different types of reactions by transferring electrons from either molecule A to B or vice versa. It is involved in oxidizing electrons away from a molecule.
2) Hydrolase - uses water to divide a molecule into two other molecules.
3) Transferase - you move some functional group X from molecule B to molecule A
4) Ligase - catalyzes reactions between two molecules, A and B, that are combining to form a complex between the two. (example: DNA replication)
5) Lyase - divides a molecule into two other molecules without using water and without reducing or oxidation
Data:
weight of water before heating = 0.349
weight of hydrate before heateing = 2.107
Formula:
Weight percent of water = [ (weight of water) / (weight of the hydrate) ] * 100
Solution:
Weight percent of water = [ 0.349 / 2.107] * 100 ≈ 16.6 %
Answer: 16.6%