Answer:
Explanation:
Given that,
The volume of the balloon is
V = 440 × 10³ m³
Buoyant force F?
Given the density of the surrounding to be 2.58 kg/m³
ρ = 2.58 kg/m³
The buoyant force is the weight of water displaced and it is calculated using
F_b = ρVg
Where
F_b is buoyant force
ρ is density
V is the volume of the liquid displace.
g is the acceleration due to gravity
Then,
F_b = ρVg
F_b = 2.58 × 440 × 10³ × 9.81
F_b = 1.1 × 10^7 N
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that force on the passenger while moving in circle is given as

now variation in force is given as

here speed is constant
Part b)
Now if the variation in force is required such that r is constant then we will have

so we have

Part c)
As we know that time period of the circular motion is given as

so here if radius is constant then variation in time period is given as

Answer:
P = 450 J
Explanation:
Given that,
Mass of a child, m = 18 kg
The vertical distance from the top to the bottom of the slide is 2.5 metres.
The Gravitational field strength = 10 N/kg
We need to find the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.
The formula for the gravitational potential energy is given by :
P = mgh
Substituting all the values,
P = 18 kg × 10 m/s² × 2.5 m
P = 450 J
Hence, the decrease in gravitational potential energy is 450 J.
That type of bending is called "diffraction" of waves.