In our solar system, terrestrial planets are separated from the gas giants by the asteroid belt. The asteroid belt is a region in the solar system between Mars and Jupiter where asteroids are located. Gas giants do not have a solid surface and possible a small rocky core. The gas giants are Jupiter, Saturn, Uranus and Neptune. The first four planets, Mercury, Venus, Earth and Mars.
Answer:
6 A
Explanation:
First of all, we need to calculate the equivalent resistance of the circuit. The three resistors are connected in parallel, so their equivalent resistance is given by:

And now we can use Ohm's law to find the current in the circuit:

Answer:
The value of the correct angle of banking for the road is
°
Explanation:
Given data
Velocity (v) = 60 
Radius = 150 m
The velocity of the car in this case is given by



Put all the values in above formula we get

2.446
°
Therefore the value of the correct angle of banking for the road is
°
Wow ! I understand your shock. I shook and vibrated a little
when I looked at this one too.
The reason for our shock is all the extra junk in the question,
put there just to shock and distract us.
"Neutron star", "5.5 solar masses", "condensed burned-out star".
That's all very picturesque, and it excites cosmic fantasies in
out brains when we read it, but it's just malicious decoration.
It only gets in the way, and doesn't help a bit.
The real question is:
What is the acceleration of gravity 2000 m from
the center of a mass of 1.1 x 10³¹ kg ?
Acceleration of gravity is
G · M / R²
= (6.67 x 10⁻¹¹ N·m²/kg²) · (1.1 x 10³¹ kg) / (2000 m)²
= (6.67 x 10⁻¹¹ · 1.1 x 10³¹ / 4 x 10⁶) (N) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ (kg · m / s²) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ m / s²
That's about 1.87 x 10¹³ times the acceleration of gravity on
Earth's surface.
In other words, if I were standing on the surface of that neutron star,
I would weigh 1.82 x 10¹² tons, give or take.
The range of the projectile is 188 m
Explanation:
The motion of the arrow in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:
- A uniform motion (constant velocity) along the horizontal direction
- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction
The path of a projectile is the combination of these two motions: see figure in attachment.
In order to find the horizontal range of the projectile, we just need to calculate the horizontal distance travelled.
We have:
t = 5.0 s (time of fligth of the projectile)
and the horizontal velocity is constant, and it is given by

where
is the initial velocity
is the angle of projection
Substituting,

And therefore, the range of the projectile is:

Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly