Answer:
ALL AWNERS HERE
Explanation:
https://quizlet.com/449884025/test-3-physics-2-flash-cards/
Answer:
B.
It will be greater than 10 J.
Explanation:
The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):
E = PE + KE
According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.
The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.
The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.
Here at the beginning, when it is at the top of the roof, the baseball has:
PE = 120 J
KE = 10 J
So the total energy is
E = 120 + 10 = 130 J
As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).
Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.
I’m not 100% sure but i think it’s A because if you divide the speed by the time you get 2 and also all the other answer choices don’t make any sense!
Answer:
time to fall is 3.914 seconds
Explanation:
given data
half distance time = 1.50 s
to find out
find the total time of its fall
solution
we consider here s is total distance
so equation of motion for distance
s = ut + 0.5 × at² .........1
here s is distance and u is initial speed that is 0 and a is acceleration due to gravity = 9.8 and t is time
so for last 1.5 sec distance is 0.5 of its distance so equation will be
0.5 s = 0 + 0.5 × (9.8) × ( t - 1.5)² ........................1
and
velocity will be
v = u + at
so velocity v = 0+ 9.8(t-1.5) ..................2
so first we find time
0.5 × (9.8) × ( t - 1.5)² = 9.8(t-1.5) + 0.5 ( 9.8)
solve and we get t
t = 3.37 s
so time to fall is 3.914 seconds
Answer: B
adding force will add accesion