Answer:
Δ v = 125 m/s
Explanation:
given,
mass of space craft = 435 Kg
thrust = 0.09 N
time = 1 week
= 7 x 24 x 60 x 60 s
change in speed of craft = ?
Assuming no external force is exerted on the space craft
now,



a = 2.068 x 10⁻⁴ m/s²
using equation of motion
Δ v = a t
Δ v = 2.068 x 10⁻⁴ x 7 x 24 x 60 x 60
Δ v = 125 m/s
Answer:
2452.79432 m/s
Explanation:
m = Mass of ice
= Latent heat of steam
= Specific heat of water
= Latent heat of ice
v = Velocity of ice
= Change in temperature
Amount of heat required for steam

Heat released from water at 100 °C

Heat released from water at 0 °C

Total heat released is

The kinetic energy of the bullet will balance the heat

The velocity of the ice would be 2452.79432 m/s
I’m not sure but I think it’s
△ m=5 and △= -3 and so
Answer: 5/△-3 m/s
So sorry if it’s wrong
If there is no existence of capacitors in our world there would be no electrical or electronic engineering.
A capacitor is a device that stores electrical energy in an electric field. It has two terminals and is a passive electrical component. Capacitance refers to a capacitor's effect. A capacitor commonly referred to as a condenser is one of the fundamental parts needed to create electronic circuits. Without fundamental parts like resistors, inductors, diodes, transistors, etc., a circuit's design is incomplete or it won't work properly.
Energy storage is capacitors' most popular application. Power conditioning, signal coupling or decoupling, electronic noise filtering, and remote sensing are further applications. Capacitors are employed in a wide variety of industries and have integrated into daily life due to their numerous applications.
There are numerous significant uses for capacitors. They are employed in digital circuits, for instance, to prevent the loss of data saved in big computer memories during a brief loss of power. The electric energy held in such capacitors keeps the data from being lost during a brief power outage.
To know more about capacitors refer to: brainly.com/question/14126841
#SPJ9