1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
2 years ago
10

Leta Stetter Hollingworth conducted pioneering work on __________. A. identity development in ethnic minorities B. cognitive pro

cesses in animals and humans C. racism and its effects on child development D. adolescent development and gifted children  
Physics
2 answers:
dalvyx [7]2 years ago
7 0

This is the only answer in the choices.

D. adolescent development and gifted children  

rusak2 [61]2 years ago
5 0
I believe the correct answer from the choices listed above is option D. Leta Stetter Hollingworth conducted pioneering work on adolescent development and gifted children. She <span>was an American psychologist who conducted pioneering work in the early 20th century. </span>
You might be interested in
BIGGGGGGG POINTS 22 POINTS ANSWER NOW. Tungsten wire is used as the filament in light bulbs. It glows white-hot as current passe
Mashutka [201]

Answer:

Tungsten wire is used as the filament in light bulbs. It glows white-hot as current passes through it.

Tungsten is used in light bulbs because its high <u>RESISTANCE</u>  converts electric energy into light and heat.

Explanation:

7 0
3 years ago
Read 2 more answers
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (h0 = 20.0 cm).
Ede4ka [16]

Answer:

a. The object with the smallest rotational inertia, the thin hoop

b. The object with the smallest rotational inertia, the thin hoop

c.  The rotational speed of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

Explanation:

a. Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain.

Since the thin has the smallest rotational inertia. This is because, since kinetic energy of a rotating object K = 1/2Iω² where I = rotational inertia and ω = angular speed.

ω = √2K/I

ω ∝ 1/√I

since their kinetic energy is the same, so, the thin hoop which has the smallest rotational inertia spins fastest at the bottom.

b. Again, without doing any calculations, decide which object would get to the bottom first.

Since the acceleration of a rolling object a = gsinФ/(1 + I/MR²), and all three objects have the same kinetic energy, the object with the smallest rotational inertia has the largest acceleration.

This is because a ∝ 1/(1 + I/MR²) and the object with the smallest rotational inertia  has the smallest ratio for I/MR² and conversely small 1 + I/MR² and thus largest acceleration.

So, the object with the smallest rotational inertia gets to the bottom first.

c. Assuming all objects are rolling without slipping, have a mass of 2.00 kg and a radius of 3.00 cm, find the rotational and translational speed at the bottom of the incline of any one of these three objects.

We know the kinetic energy of a rolling object K = 1/2Iω²  + 1/2mv² where I = rotational inertia and ω = angular speed, m = mass and v = velocity of center of mass = rω where r = radius of object

The kinetic energy K = potential energy lost = mgh where h = 20.0 cm = 0.20 m and g = acceleration due to gravity = 9.8 m/s²

So, mgh =  1/2Iω²  + 1/2mv² =  1/2Iω²  + 1/2mr²ω²

Let I = moment of inertia of sphere = 2mr²/5 where r = radius of sphere = 3.00 cm = 0.03 m and m = mass of sphere = 2.00 kg

So, mgh = 1/2Iω²  + 1/2mr²ω²

mgh = 1/2(2mr²/5 )ω²  + 1/2mr²ω²

mgh = mr²ω²/5  + 1/2mr²ω²

mgh = 7mr²ω²/10

gh = 7r²ω²/10

ω² = 10gh/7r²

ω = √(10gh/7) ÷ r

substituting the values of the variables, we have

ω = √(10 × 9.8 m/s² × 0.20 m/7) ÷ 0.03 m

= 1.673 m/s ÷ 0.03 m

= 55.77 rad/s

≅ 55.8 rad/s

So, its rotational speed is 55.8 rad/s

Its translational speed v = rω

= 0.03 m × 55.8 rad/s

= 1.67 m/s

So, its rotational speed is of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

6 0
2 years ago
Pulsars "blink" because they _____.
rosijanka [135]
A pulsar, or a pulsing star, is a highly magnetized neutron star that emits a beam of electromagnetic radiation. So they blink when they are rotating because the beam of radiation they emit can only be seen when it is facing the Earth.
Hope this helps. 
4 0
3 years ago
PLEASE HELPPPP!!!!
Tresset [83]

you will hear a higher pitch due to a higher frequency.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Boyles law<br> squeezing a balloon is one way to burst it. Why? ...?
    8·1 answer
  • Show that the Mass spring system executes simple harmonic motion(SHM)?​
    13·1 answer
  • During aerobic activity, if your heart rate is lower than the lower limit, you are ___________________.
    11·1 answer
  • What is emotional strength?​
    11·1 answer
  • How is ozone formed?
    11·2 answers
  • The upward normal force exerted by the floor is 710 N on an elevator passenger who weighs 720 N . You may want to review (Pages
    11·1 answer
  • What average net force is required to stop a 4.5 kg bowling ball,initially at rest, accelerated for 6 seconds over a distance of
    12·1 answer
  • Llus
    14·2 answers
  • Uest<br>1. State Newton's law of cooling.​
    6·1 answer
  • A vertical spring stretches 9.6 cm when a 1.3 kg block is hung from its end. (a) Calculate the spring constant. This block is th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!