1.c.) vegetarian and sediment build up in the bottom hope that work's✌
3.<span>D. Since in an uplift the water descending will go even faster making it crush on the rocks with more force and more friction increasing the rate of erosion.... Helped ? :) </span>
<span>And it's true since more water makes it faster and increase in land covering
thus taking more to the sea bed :x erosion
5.</span><span>Winter – Due to an increase in snowfall
</span><span>
8.</span><span>A perched water table is normally insufficient for the purpose of supplying domestic groundwater requirements and generally runs dry after it has been drilled. If a perched water table intersects a surface that has a slope, it can be manifested by seeps or springs along this line of intersection. The slope of a water table is in general proportional to the slope of the overlying land surface.
</span>13.<span>The oil could leak into your neighbors’ yards and kill the grass roots.
</span><span>
14.
</span><span>Energy needed
</span>
phew im done :)
Proton:
Positively charged
Inside nucleus
Mass - 1
Electrons:
Negatively charged
Outside the nucleus
Mass - 1/2000
Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Answer:
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Explanation:
Chemical equation:
4Al(s) + 3O₂(l) → 2AlO₃(s)
Given data:
Mass of aluminium = 87 g
Moles of oxygen needed = ?
Solution:
Moles of aluminium:
Number of moles of aluminium= Mass/ molar mass
Number of moles of aluminium= 87 g/ 27 g/mol
Number of moles of aluminium= 3.2 mol
Now we will compare the moles of aluminium with oxygen.
Al : O₂
4 : 3
3.2 : 3/4×3.2 = 2.4 mol
2.4 moles of oxygen are needed to react with 87 g of aluminium.