Answer:
609547.12 Pa ≈ 6.10×10^5 Pa
Explanation:
Step 1:
Data obtained from the question. This include the following:
Force (F) = 49.8 N
Radius (r) = 0.00510 m
Pressure (P) =..?
Step 2:
Determination of the area of the head of the nail.
The head of a nail is circular in nature. Therefore, the area is given by:
Area (A) = πr²
With the above formula we can obtain the area as follow:
Radius (r) = 0.00510 m
Area (A) =?
A = πr²
A = π x (0.00510)²
A = 8.17×10^-5 m²
Therefore the area of the head of the nail is 8.17×10^-5 m²
Step 3:
Determination of the pressure exerted by the hammer.
This is illustrated below:
Force (F) = 49.8 N
Area (A) = 8.17×10^-5 m²
Pressure (P) =..?
Pressure (P) = Force (F) /Area (A)
P = F/A
P = 49.8/8.17×10^-5
P = 609547.12 N/m²
Now, we shall convert 609547.12 N/m² to Pa.
1 N/m² = 1 Pa
Therefore, 609547.12 N/m² = 609547.12 Pa.
Therefore, the pressure exerted by the hammer on the nail is 609547.12 Pa or 6.10×10^5 Pa
Answer:
The correct answer is "6666.67 N".
Explanation:
The given values are:
Mass,
m = 0.100
Relative speed,
v = 4.00 x 10³
time,
t = 6.00 x 10⁻⁸
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
Answer:
The value is 
Explanation:
From the question we are told that
The length of the solenoid is 
The magnetic field is 
The current is 
The desired temperature is 
Generally the magnetic field is mathematically represented as

=> 
Here
is the permeability of free space with value

So

=> 
Answer:
As point B is located inside the copper block so net electric field at point B is j.
Explanation:
Consider the figure attached below. The net electric field at location B,that is inside the copper block is zero because when a conductor is charged or placed in an electric field of external charges, net charge lies on the surface of conductor and there is no electric field inside the conductor. As point B is located inside the copper block so net electric field at point B is zero as well direction of net electric field at point B is zero.
Answer:
5.5 m/ sec
Explanation:
Because the inclined surface is frictionless so we can assume that total change of energy is zero
i-e ΔE = 0
Or we can say that difference between final and initial energy is zero i-e
Ef- Ei =0
Where,
Ef= final energy at the top of the ramp= KEf+PEf
Ei= Initial energy at the bottom of the ramp=KEi+PEi
So we have
(KEf+PEf)-(KEi+PEi)=0
==>KEf-KEi+PEf-PEi=0 -------------(1)
KEf = mgh = 200×9.8×h
Where h= Sin 22 = h/d= h/4.1
or
0.375×4.1=h
or h= 1.54 m
So, PEf= 200×9.8×1.54=3018.4 j
and KEf= 1/2 m
= 0.5×200×0=0 j
PEi= mgh = 200×9.8×0=0 j
KEi= 1/2 m
=0.5×200×
=100
j
Put these values in eq 1, we get;
0-100
+3018.4-0=0
-100
=-3018.4
==>
= 30.184
==> Vi = 