1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
13

Lab report: Magnetic and Electric Fields . physical science edge 2020

Physics
2 answers:
katrin2010 [14]3 years ago
5 0
Magnetic fields are an area around a magnetic material or a moving electric charge with which the force of magnet
Verdich [7]3 years ago
5 0

Answer:

I Dont think people know it

Explanation:

You might be interested in
Determine the magnitude of the force between two 42 m-long parallel wires separated by 0.03 m, both carrying 6.3 A in the same d
xz_007 [3.2K]

Answer:

The magnitude of the force between the two parallel wires is 0.0111 N.

Explanation:

Given;

length of the two parallel wires, L = 42 m

distance between the two wires, r = 0.03 m

current in both wires, I₁, I₂ = 6.3 A

Therefore, the magnitude of the repulsive force between the two parallel wires is given by;

F = \frac{\mu_0 I_1I_2l}{2\pi r}\\\\where;\\\mu_0 \ is \ permeability \ of \ free \ space = 4\pi *10^{-7} \ T.m/A \\\\F = \frac{(4\pi *10^{-7})(6.3)^2(42)}{2\pi (0.03)}\\\\F =   0.0111 \ N

Therefore, the magnitude of the force between the two parallel wires is 0.0111 N.

6 0
3 years ago
What is the function of a switch? pls HELPPPPPP TYSMMMMM <3​
lesya [120]

Answer:

Connect multiple hosts: Normally, a switch provides a large number of ports for cable connections, allowing for star topology routing. It is usually used to connect multiple PCs to the network. Forwards a message to a specific host: Like a bridge, a switch uses the same forwarding or filtering logic on each port. When any host on the network or a switch sends a message to another host on the same network or the same switch, the switch receives and decodes the frames to read the physical (MAC) address portion of the message. Manage traffic: A switch in networking can manage traffic either coming into or exiting the network and can connect devices like computers and access points with ease. Keep electrical signal undistorted: When a switch forwards a frame, it regenerates an undistorted square electrical signal. Increase LAN bandwidth: A switch divides a LAN into multiple collision domains with independent broadband, thus greatly increasing the bandwidth of the LAN.

Explanation:

8 0
3 years ago
Read 2 more answers
If the distance d (in meters) traveled by an object in time t (in seconds) is given by the formula d=a+bt2, the si units of a an
ss7ja [257]
Distance , d = a+bt^2

The unit of d is in meter and t is in seconds.

So the unit of a a must be meter.

Now we have unit of bt^2 is meter.

So unit of b*second^2 = meter

Unit of b = meter/second^2

So unit of a = m and unit of b = m/s^2.
8 0
3 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
1. Which of the following is an accurate statement? A. Step-down voltage transformers have a different number of turns in the pr
Snowcat [4.5K]
'C' is the only true statement on the list.

Step-up voltage transformers have a lower number of turns
in the primary than in the secondary winding.

4 0
3 years ago
Other questions:
  • compare 51.5 hectograms to 51500 decigrams. How do each of these values compare to a gram, and which represents a larger mass?
    11·1 answer
  • During which month does the sun rise north of due east in New York State?
    13·1 answer
  • A pulley with a radius of 3.0 cm and a rotational inertia of 4.5 x 10^-3 kg∙m2 is suspended from the ceiling. A rope passes over
    10·1 answer
  • What is 100N in kilograms
    13·2 answers
  • An electron starts with a speed of 5.50×105 m/s . It moves in a region with an electric field. Some time later the electron has
    13·1 answer
  • An ant is crawling along a straight wire, which we shall call the x axis, from A to B to C to D
    5·1 answer
  • When is a train on Earth in motion relative to the sun? A It is relative to the sun only when the train is not moving. B It is n
    13·1 answer
  • A basketball of mass 0.608 kg is dropped from rest from a height of 1.37 m. It rebounds to a height of 0.626 m.
    14·1 answer
  • The carts are moving on a level, frictionless track. After the collision all three carts stick together. Find the speed of the c
    11·1 answer
  • What is the displacement of the object from 12 seconds to 16 seconds
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!