Answer:
simple projects bovonhztisgx
Given Information:
Output power required = Pout = 2.80 MW
Efficiency = η = 30%
Intensity = I = 1180 W/m²
Required Information:
Effective area = A = ?
Answer:
Effective area = A = 7.907x10³ m²
Step-by-step explanation:
A community plans to build a facility to convert solar power into electrical power and this facility has an efficiency of 30%
As we know efficiency is given by
η = Pout/Pin
Where Pout is the output power and Pin is the input power.
Pin = Pout/η
Pin = 2.80x10⁶/0.30
Pin = 9.33x10⁶ W
The effective area of a perfectly absorbing surface used in such an installation can be found using
A = Pin/I
Where I is the in Intensity of the sunlight in W/m²
A = 9.33x10⁶/1180
A = 7.907x10³ m²
Therefore, the effective area of the absorbing surface would be 7.907x10³ m².
Answer: A) Gradually decrease
Explanation:
The convection value of heat transfer rate are gradually decreasing with the flow of the heat. Flow in a circular pipe, flow direction does not change in the velocity path. The average of the coefficient of heat transfer and the number of pipes are needed and the effects are get neglected so that is why the flow are fully developed.
Answer:

The entropy change of the carbon dioxide is -0.1104 kJ/kg.K
Explanation:
We are given that carbon dioxide undergoes a process in a closed system.
We are asked to find the entropy change of the carbon dioxide with the assumption that the specific heats are constant.
The entropy change of the carbon dioxide is given by

Where Cp is the specific heat constant
Cp = 0.846 kJ/kg.K
R is the universal gas constant
R = 0.1889 kJ/kg.K
T₁ and T₂ is the initial and final temperature of carbon dioxide.
P₁ and P₂ is the initial and final pressure of carbon dioxide.




Therefore, the entropy change of the carbon dioxide is -0.1104 kJ/kg.K