1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
3 years ago
13

A cylindrical specimen of some metal alloy having an elastic modulus of 124 GPa and an original cross-sectional diameter of 4.2

mm will experience only elastic deformation when a tensile load of 1810 N is applied. Calculate the maximum length of the specimen before deformation if the maximum allowable elongation is 0.46 mm.
Engineering
1 answer:
IrinaVladis [17]3 years ago
5 0

Answer:

the maximum length of the specimen before deformation is 0.4366 m

Explanation:

Given the data in the question;

Elastic modulus E = 124 GPa = 124 × 10⁹ Nm⁻²

cross-sectional diameter D = 4.2 mm = 4.2 × 10⁻³ m

tensile load F = 1810 N

maximum allowable elongation Δl = 0.46 mm = 0.46 × 10⁻³ m

Now to calculate the maximum length l for the deformation, we use the following relation;

l = [ Δl × E × π × D² ] / 4F

so we substitute our values into the formula

l = [ (0.46 × 10⁻³) × (124 × 10⁹) × π × (4.2 × 10⁻³)² ] / ( 4 × 1810 )

l = 3161.025289 / 7240

l = 0.4366 m

Therefore, the maximum length of the specimen before deformation is 0.4366 m

You might be interested in
In a creep test, increasing the temperature will (choose the best answer) A. increase the instantaneous initial deformation B. i
Hitman42 [59]

Answer:

All of the above

Explanation:

firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.

Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens.  As temperature is raised the recrystallization gets to be more.

8 0
2 years ago
Verify if 83 is a term in the arithmetic sequence 11,15,19,23
EleoNora [17]

Answer:

yes, it is

Explanation:

The sequence: (+4)

23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83

Hope this helps! :)

3 0
2 years ago
A large heat pump should upgrade 5 MW of heat at 85°C to be delivered as heat at 150°C. Suppose the actual heat pump has a COP o
AysviL [449]

Answer:

W=2 MW

Explanation:

Given that

COP= 2.5

Heat extracted from 85°C  

Qa= 5 MW

Lets heat supplied at 150°C   = Qr

The power input to heat pump = W

From first law of thermodynamics

Qr= Qa+ W

We know that COP of heat pump given as

COP=\dfrac{Qr}{W}

2.5=\dfrac{5}{W}

2.5=\dfrac{5}{W}

W=2 MW

For Carnot heat pump

COP=\dfrac{T_2}{T_2-T_1}

2.5=\dfrac{T_2}{T_2-(273+85)}

2.5 T₂ -  895= T₂

T₂=596.66 K

T₂=323.6 °C

7 0
3 years ago
A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with air as the working fluid. The air enters the
ololo11 [35]

Answer:

A) W' = 15680 KW

B) W' = 17113.87 KW

Explanation:

We are given;

Temperature at state 1; T1 = 290 K

Temperature at state 3; T3 = 1100 K

Rate of heat transfer; Q_in = 35000 kJ/s = 35000 Kw

Pressure of air into compressor; P_c = 95 kPa

Pressure of air into turbine; P_t = 760 kPa

A) The power assuming constant specific heats at room temperature is gotten from;

W' = [1 - ((T4 - T1)/(T3 - T2))] × Q_in

Now, we don't have T4 and T2 but they can be gotten from;

T4 = [T3 × (r_p)^((1 - k)/k)]

T2 = [T1 × (r_p)^((k - 1)/k)]

r_p = P_t/P_c

r_p = 760/95

r_p = 8

Also,k which is specific heat capacity of air has a constant value of 1.4

Thus;

Plugging in the relevant values, we have;

T4 = [(1100 × (8^((1 - 1.4)/1.4)]

T4 = 607.25 K

T2 = [290 × (8^((1.4 - 1)/1.4)]

T2 = 525.32 K

Thus;

W' = [1 - ((607.25 - 290)/(1100 - 525.32))] × 35000

W' = 0.448 × 35000

W' = 15680 KW

B) The power accounting for the variation of specific heats with temperature is given by;

W' = [1 - ((h4 - h1)/(h3 - h2))] × Q_in

From the table attached, we have the following;

At temperature of 607.25 K and by interpolation; h4 = 614.64 KJ/K

At T3 = 1100 K, h3 = 1161.07 KJ/K

At T1 = 290 K, h1 = 290.16 KJ/K

At T2 = 525.32 K, and by interpolation, h2 = 526.12 KJ/K

Thus;

W' = [1 - ((614.64 - 290.16)/(1161.07 - 526.12))] × 35000

W' = 17113.87 KW

4 0
2 years ago
2.) A fluid moves in a steady manner between two sections in a flow
Talja [164]

Answer:

250\ \text{lbm/min}

625\ \text{ft/min}

Explanation:

A_1 = Area of section 1 = 10\ \text{ft}^2

V_1 = Velocity of water at section 1 = 100 ft/min

v_1 = Specific volume at section 1 = 4\ \text{ft}^3/\text{lbm}

\rho = Density of fluid = 0.2\ \text{lb/ft}^3

A_2 = Area of section 2 = 2\ \text{ft}^2

Mass flow rate is given by

m=\rho A_1V_1=\dfrac{A_1V_1}{v_1}\\\Rightarrow m=\dfrac{10\times 100}{4}\\\Rightarrow m=250\ \text{lbm/min}

The mass flow rate through the pipe is 250\ \text{lbm/min}

As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

m=\rho A_2V_2\\\Rightarrow V_2=\dfrac{m}{\rho A_2}\\\Rightarrow V_2=\dfrac{250}{0.2\times 2}\\\Rightarrow V_2=625\ \text{ft/min}

The speed at section 2 is 625\ \text{ft/min}.

3 0
3 years ago
Other questions:
  • Which of the following is not a primary or fundamental dimension? (a)-mass m (b)-length L (c)- timer t (d)-volume V
    5·1 answer
  • In a reversible process both the system and surrondings can be returned to their initial states. a)-True b)-False
    14·1 answer
  • In dynamics, the friction force acting on a moving object is always a) in the same direction of its motion b) a kinetic friction
    15·1 answer
  • In the designation of wrought Al alloys, eg. 3m, what does the first digit-3- refer to? A. The main alloying element B. Carbon p
    15·1 answer
  • Cold water at 20 degrees C and 5000 kg/hr is to be heated by hot water supplied at 80 degrees C and 10,000 kg/hr. You select fro
    14·1 answer
  • The hydraulic tool holder is a type of what? A.port B. clamp C. Press D. Actuator​
    11·1 answer
  • Identify the different engineering activities/steps in the engineering design process for each steps,summarize in 1–3 sentences
    13·1 answer
  • Random question, does anyone here use Lego, do not answer unless that is a yes
    15·2 answers
  • What is Join..?? Explain different types of joins.
    10·1 answer
  • 3.8 LAB - Select lesson schedule with multiple joins
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!