1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vanyuwa [196]
2 years ago
11

What scientific process would you be using as you identified the characteristics of the buttery

Physics
1 answer:
jarptica [38.1K]2 years ago
8 0

Answer:

The butterfly and moth develop through a process called metamorphosis.

Explanation:

hoped i helped

You might be interested in
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.820 m. W
Vikentia [17]

Answer:

1.0752 kgm/s

Explanation:

Considering when the drop was dropped from rest from a height,

mass of the ball, m = 0.120 kg

height, h = - 1.25 m

the initial velocity, u = 0 m/s

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            V^{2} = U^{2} + 2gh

Substituting the values,

                             V^{2} = 0^{2} + 2(-9.8 m/s^{2})(-1.25 m)

                             V^{2} = 24.5 m/s

                             V = \sqrt{24.5} \ m/s

                             V = 4.95 \ m/s

                            V = ± 4.95 m/s

                            V = - 4.95 m/s

Since the ball is moving downward, the final velocity of the ball when it hits the floor is  V = - 4.95 m/s  

Considering when the ball rebounds from the floor,

assume the mass of the ball still remain, m = 0.120 kg

height, h = 0.820 m

the final velocity, v = 0 m/s  

the acceleration due to gravity, g = - 9.8 m/s²

From equation of motion

                            V^{2} = U^{2} + 2gh

Substituting the values,

                            0^{2} = U^{2} + 2(-9.8 m/s^{2})(0.820 m)

                            0 = U^{2} - 16.072 m/s

                            U^{2} = 16.072 m/s

                            U = \sqrt{16.072} \ m/s

                           U = ± 4.01 m/s

                          U = + 4.01 m/s

Since the ball is moving upward, the initial velocity of the ball from the bounce from the floor is  U = + 4.01 m/s                        

From Newton's second law of motion, applied force is directly proportional to the rate of change in momentum.

                            F = \frac{mv - mu}{t}

                          F.t = m(v - u)

       ⇒      Impulse = Change in momentum

To calculate the impulse, the moment before the ball hits the ground will be the initial momentum while the moment the ball rebounces will be the final velocity,                        

          ∴          F.t = 0.120  kg(4.01  m/s - (-4.95  m/s) )

                      F.t = 0.120  kg(4.01  m/s + 4.95  m/s) )

                      F.t = 0.120  kg × 8.96  m/s

                      Impulse  = 1.0752 kgm/s

The impulse given to the ball by the floor is 1.0752 kgm/s

                             

6 0
3 years ago
The tires of a car make 75 revolutions as the car reduces its speed uniformly from 95 km/hr to 55 km.hr. the tires have a diamet
sveta [45]
<span>95 km/h = 26.39 m/s (95000m/3600 secs) 55 km/h = 15.28 m/s (55000m/3600 secs) 75 revolutions = 75 x 2pi = 471.23 radians radius = 0.80/2 = 0.40m v/r = omega (rad/s) 26.39/0.40 = 65.97 rad/s 15.28/0.40 = 38.20 rad/s s/((vi + vf)/2) = t 471.23 /((65.97 + 38.20)/2) = 9.04 secs (vf - vi)/t = a (38.20 - 65.97)/9.04 = -3.0719 The angular acceleration of the tires = -3.0719 rad/s^2 Time is required for it to stop (0 - 38.20)/ -3.0719 = 12.43 secs How far does it go? 65.97 - 38.20 = 27.77 M</span>
7 0
3 years ago
In an LC circuit at one time the charge stored by the capacitor is 10 mC and the current is 3.0 A. If the frequency of the circu
Ronch [10]

Answer:

i_2=3.61\ A

Explanation:

<u>LC Circuit</u>

It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:

q, q_1, q_2 = charge of the capacitor in any time t, t_1, t_2

q_o = initial charge of the capacitor

\omega=angular frequency of the circuit

i, i_1, i_2 = current through the circuit in any time t, t_1, t_2

The charge in an LC circuit is given by

q(t) = q_0 \, cos (\omega t )

The current is the derivative of the charge

\displaystyle i(t) = \frac{dq(t)}{dt} = - \omega q_0 \, sin(\omega t).

We are given

q_1=10\ mc=0.01\ c, i_1=3\ A,\ q_2=6\ mc=0.006\ c\ ,\ f=\frac{1000}{4\pi}

It means that

q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]

i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]

From eq 1:

\displaystyle cos (\omega t_1 )=\frac{q_1}{q_0}

From eq 2:

\displaystyle sin(\omega t_1)=-\frac{i_1}{\omega q_0}

Squaring and adding the last two equations, and knowing that

sin^2x+cos^2x=1

\displaystyle \left ( \frac{q_1}{q_0} \right )^2+\left ( \frac{i_1}{\omega q_0} \right )^2=1

Operating

\displaystyle \omega^2q_1^2+i_1^2=\omega^2q_o^2

Solving for q_o

\displaystyle q_o=\frac{\sqrt{\omega^2q_1^2+i_1^2}}{\omega}

Now we know the value of q_0, we repeat the procedure of eq 1 and eq 2, but now at the second time t_2, and solve for i_2

\displaystyle \omega^2q_2^2+i_2^2=\omega^2q_o^2

Solving for i_2

\displaystyle i_2=w\sqrt{q_o^2-q_2^2}

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.

\displaystyle f=\frac{1}{4\pi}\ KHz

w=2\pi f=500\ rad/s

\displaystyle q_o=\frac{\sqrt{(500)^2(0.01)^2+3^2}}{500}

q_0=0.01166\ c

Finally

\displaystyle i_2=500\sqrt{0.01166^2-.006^2}

i_2=5\ A

3 0
3 years ago
A mass on a spring with k=88.7 N/m oscillates 15 times in 9.24s. what is the objects mass? unit=kg?
sweet [91]

The mass on the spring is 0.86 kg

Explanation:

The period of a mass-spring system is given by the equation

T=2\pi \sqrt{\frac{m}{k}}

where

m is the mass

k is the spring constant

In this problem, we have:

k = 88.7 N/m is the spring constant

The system makes 15 oscillations in 9.24 s: therefore, the period of the system is

T=\frac{9.24}{15}=0.62 s

Now we can re-arrange the first equation  to solve for the mass:

m=k(\frac{T}{2\pi})^2=(88.7)(\frac{0.62}{2\pi})^2=0.86 kg

Learn more about period:

brainly.com/question/5438962

#LearnwithBrainly

3 0
3 years ago
Consider two less-than-desirable options.
Gemiola [76]

Answer:

The force would be the same in both cases - option C.

Explanation:

The change in momentum is known as an impulse. In the two cases under consideration, the change in momentum is the same, thus impulse for both cases is the same.

Impulse is the average force multiplied by time interval.

I = F(average)*ΔT. Where F(average) is the average force and ΔT is the time interval.

The average force in both cases is the same since the collision time is the same.

Thus option C is the correct answer.

7 0
3 years ago
Other questions:
  • RIGHT ANSWER GETS BRAINLIEST+FIVE STARS!
    5·2 answers
  • A severe thunderstorm dumped 2.0 in of rain in 30 min on a town of area 22 km2. what mass of water fell on the town? one cubic m
    6·2 answers
  • A dart is loaded into a spring-loaded toy dart gun by pushing the spring in by a 
distance d. For the next loading?the spring is
    7·1 answer
  • What is the input of energy for a device that provides 50 units of useful energy and has an efficiency of 0.55?
    13·1 answer
  • Physics help please..............
    11·1 answer
  • What is neccessary for a magnetic field to create electric current in a copper coil?
    13·1 answer
  • Which of these is an organism?
    8·2 answers
  • A mass of 0.8 kg is fixed at a vertical spring with an unknown spring constant. When spring is released from rest, it extends to
    9·1 answer
  • The term 'balanced diet' best means a person is getting which of the following? O A fewer nutrients and vitamins than it needs.
    13·2 answers
  • Which describes the electric field at the center of a ring of uniform negative charge?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!