Responder:
13,01 m / s
Explicación:
Paso uno:
datos dados
masa de la persona 1 m = 80 kg
velocidad de la persona 1 v = 9 m / s
masa de la persona 2 M = 55kg
velocidad de la persona 2 v =?
Segundo paso:
la expresión del impulso se da como
P = mv
para la primera persona, el impulso es
P = 80 * 9
P = 720N
Paso tres:
queremos que la segunda persona tenga el mismo impulso que la primera, por lo que la velocidad debe ser
720 = 55v
v = 720/55
v = 13,09
v = 13,01 m / s
Por lo tanto, la magnitud de la velocidad debe ser 13.01 m / s.
Answer: A student walks 50 meters east, 40 meters north, 35 meters east, and then 20 m south. Then the magnitude and direction of the student's total displacement will be 87.32 m along the direction of AD or in east-south direction.
Explanation: To find the correct answer, we need to know about the Displacement of a body in motion.
<h3>What is displacement of a body in motion?</h3>
- The displacement is the shortest distance between initial and final positions of a body.
- It's a vector quantity, and can positive, negative, or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
<h3>How to solve the problem?</h3>
- At first, we can draw a diagram showing the motion of the body.
- From the diagram, the displacement of the body will be equal to the distance between point A and D.
- To solve this, we can use Pythagoras theorem.

Thus, from the above calculations, we can conclude that, the displacement of the body will be equal to 87.32 m along the direction of AD or in east-south direction.
Learn more about the Displacement here:
brainly.com/question/28020108
#SPJ4
Answer:force equals to rate of change of momentum
Explanation:
F=force
t=time
m=mass
v=final velocity
u=initial velocity
(mv-mu)/t=rate of change of momentum
Force=rate of change of momentum
F=(mv-mu)/t
Is potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system
Answer:
See below explanation
Explanation:
The correspondent chemical reaction for copper carbonate decomposed by heat is:
CuCO₃ (s) → CuO (s) + CO₂ (g)
Considering all molar mass (MM) for each element ( we consider rounded numbers) :
MM CuCO₃ = 123 g/mol
MM CuO = 79 g/mol
MM CO₂ = 44 g/mol
Statement mentions that scientis heated 123.6 g of CuCO₃ (almost a MM), until a black residue is obtained, which weights 79.6 g : this solid residue is formed by CuO, and the remaining mass (approximatelly 44 g) belongs to teh second product, this is, CO₂; as it is a gas compund, it is not certainly included on the solid residue.
So, law of conservation mass is true for this case, since: 123.6 g = 79.6 g + 44 g. As explained, on the solid residue, we don not include the 44 g, which "escaped" from our system, since it is a gas compound (CO₂)