Answer:
CLASS FREQUENCIES RELATIVE FREQUENCIES
A 60 0.5
B 12 0.1
C 48 0.4
TOTAL 120 1
Step-by-step explanation:
Given that;
the frequencies of there alternatives are;
Frequency A = 60
Frequency B = 12
Frequency C = 48
Total = 60 + 12 + 48 = 120
Now to determine our relative frequency, we divide each frequency by the total sum of the given frequencies;
Relative Frequency A = Frequency A / total = 60 / 120 = 0.5
Relative Frequency B = Frequency B / total = 12 / 120 = 0.1
Relative Frequency C = Frequency C / total = 48 / 120 = 0.4
therefore;
CLASS FREQUENCIES RELATIVE FREQUENCIES
A 60 0.5
B 12 0.1
C 48 0.4
TOTAL 120 1
90 trucks- for every 2 cars there are 5 trucks
Answer:
The results don't make sense
Step-by-step explanation:
We can solve by means of a 2x2 system of equations, we have to:
"x" is the number of children's tickets
"y" is the number of adult tickets
Thus:
8 * x + 8.75 * y = 259
x + y = 35 => x = 35 - y
replacing we have:
8 * (35 - y) + 8.75 * y = 259
280 - 8 * y + 8.75 * y = 259
- 8 * y + 8.75 * y = 259 - 280
0.75 * y = -21
y = -21 / 0.75
y = -28
Thus:
x = 35 - (-28) = 63
With these results we notice that the problem has inconsistency, since the value of the tickets cannot be given a negative number, I recommend reviewing the problem, since the approach is correct.
Answer:
Polynomials are classified according to their number of terms. 4x3 +3y + 3x2 has three terms, -12zy has 1 term, and 15 - x2 has two terms. As already mentioned, a polynomial with 1 term is a monomial. A polynomial with two terms is a binomial, and a polynomial with three terms is a trinomial.
Step-by-step explanation:
The equation would be y = 3x-3