<span>The calculation of quantities in chemical equations are called Stoichiometry. Stoichiometry is a branch of chemistry which deals with relative quantities of reactants and products in chemical reactions. The correct answer is 'Stoichoimetry'. I hope this helps you. </span>
<u>Answer:</u> The law that related the ideal gas law is 
<u>Explanation:</u>
There are 4 laws of gases:
- <u>Boyle's Law:</u> This law states that pressure is inversely proportional to the volume of the gas at constant temperature.
Mathematically,

- <u>Charles' Law:</u> This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

- <u>Gay-Lussac Law:</u> This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

- <u>Avogadro's Law:</u> This law states that volume is directly proportional to number of moles at constant temperature and pressure.
Mathematically,

Hence, the law that related the ideal gas law is 
Answer:
N-Cl
Explanation:
Look at the chart below. Since N-Cl bond has a electronegativity difference of (3.0-3.0) zero, they are non-polar.
<span>Our Earth is structured around the densities of the materials which make it up.One property of density is that it determines the way materials in a mixture are sorted. This property of matter results in the layering and structure of Earth's atmosphere, water, crust, and interior.</span>
Answer:
Alright, the first thing we have to do is to balance the chemical equation
2Na3N -----> 6Na + 1N2
We have 60g of Na3N, we convert them into moles by dividing the mass of the compound by the molar mass.
Molar mass of Na3N = (22.98 x 3) + (14) = 82.94g/mol
<u>60</u> = 0.72341451651 moles of Na3N
82.94
Now because we did the balanced equation, we know the mole to mole ratio of Na3N to N2 would be 2:1, so in order to get the moles of N2 you have to divide the moles of Na3N by 2
0.72341451651 moles/2 = 0.361707258 moles of N2
Now that we have the moles of N2, we just have to determine the mass of it in grams. In order to do that, just multiply the moles by the molar mass of N2 (28g/mol)
0.361707258 x 28 = <u>10.13g of N2</u>
<u>Therefore the decomposition of 60g of Na3N would result in 10.13g of N2 (nitrogen gas)</u>