The frequency of collisions between the N₂ and H₂ molecules will decrease and the rate of reaction will also decrease.
Since the water is cooler than the gas mixture, heat will flow from the gas to the water.
The gas will cool down, so the average kinetic energy of the gas molecules will decrease.
The molecules will be moving more slowly, so there will be <em>fewer collisions</em> and <em>fewer of these collisions will have enough energy to react</em>.
The rate of reaction between H₂ and N₂ molecules at room temperature is exceedingly slow, <em>but cooling the gas mixture will make the reaction even slower</em>.
Answer : The entropy change of reaction for 1.62 moles of
reacts at standard condition is 217.68 J/K
Explanation :
The given balanced reaction is,

The expression used for entropy change of reaction
is:

![\Delta S^o=[n_{Br_2}\times \Delta S_f^0_{(Br_2)}+n_{F_2}\times \Delta S_f^0_{(F_2)}]-[n_{BrF_3}\times \Delta S_f^0_{(BrF_3)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BBr_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28Br_2%29%7D%2Bn_%7BF_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28F_2%29%7D%5D-%5Bn_%7BBrF_3%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28BrF_3%29%7D%5D)
where,
= entropy change of reaction = ?
n = number of moles
= standard entropy of formation
= 245.463 J/mol.K
= 202.78 J/mol.K
= 292.53 J/mol.K
Now put all the given values in this expression, we get:
![\Delta S^o=[1mole\times (245.463J/K.mole)+3mole\times (202.78J/K.mole)}]-[2mole\times (292.53J/K.mole)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B1mole%5Ctimes%20%28245.463J%2FK.mole%29%2B3mole%5Ctimes%20%28202.78J%2FK.mole%29%7D%5D-%5B2mole%5Ctimes%20%28292.53J%2FK.mole%29%5D)

Now we have to calculate the entropy change of reaction for 1.62 moles of
reacts at standard condition.
From the reaction we conclude that,
As, 2 moles of
has entropy change = 268.74 J/K
So, 1.62 moles of
has entropy change = 
Therefore, the entropy change of reaction for 1.62 moles of
reacts at standard condition is 217.68 J/K
Answer : The molarity of
in the solution is, 0.128 M
Explanation :
The given balanced chemical reaction is,

First we have to calculate the moles of
.


Conversion used : (1 L = 1000 ml)
Now we have to calculate the moles of
.
From the balanced chemical reaction, we conclude that
As, 2 moles of
react with 1 mole of 
So, 0.007696 moles of
react with
mole of 
The moles of
= 0.003848 mole
Now we have to calculate the molarity of
.

Now put all the given values in this formula, we get:

Therefore, the molarity of
in the solution is, 0.128 M
I believe the correct answer is C it would make the value of the left side equal to 4 and the value to the right side also equal to 4