Answer:
1249.88 mol.
Explanation:
∵ no. of moles of Fe = mass of Fe/atomic weight of Fe.
<em>∴ no. of moles of Fe </em>= (6.98 x 10⁴ g)/(55.845 g/mol) = <em>1249.88 mol.</em>
Answer : The value of
for the reaction is -959.1 kJ
Explanation :
The given balanced chemical reaction is,

First we have to calculate the enthalpy of reaction
.

![\Delta H^o=[n_{H_2O}\times \Delta H_f^0_{(H_2O)}+n_{SO_2}\times \Delta H_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta H_f^0_{(H_2S)}+n_{O_2}\times \Delta H_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%5D)
where,
= enthalpy of reaction = ?
n = number of moles
= standard enthalpy of formation
Now put all the given values in this expression, we get:
![\Delta H^o=[2mole\times (-242kJ/mol)+2mole\times (-296.8kJ/mol)}]-[2mole\times (-21kJ/mol)+3mole\times (0kJ/mol)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5B2mole%5Ctimes%20%28-242kJ%2Fmol%29%2B2mole%5Ctimes%20%28-296.8kJ%2Fmol%29%7D%5D-%5B2mole%5Ctimes%20%28-21kJ%2Fmol%29%2B3mole%5Ctimes%20%280kJ%2Fmol%29%5D)

conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction
.

![\Delta S^o=[n_{H_2O}\times \Delta S_f^0_{(H_2O)}+n_{SO_2}\times \Delta S_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta S_f^0_{(H_2S)}+n_{O_2}\times \Delta S_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2O%29%7D%2Bn_%7BSO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28SO_2%29%7D%5D-%5Bn_%7BH_2S%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28H_2S%29%7D%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20S_f%5E0_%7B%28O_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of formation
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (189J/K.mol)+2mole\times (248J/K.mol)}]-[2mole\times (206J/K.mol)+3mole\times (205J/K.mol)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28189J%2FK.mol%29%2B2mole%5Ctimes%20%28248J%2FK.mol%29%7D%5D-%5B2mole%5Ctimes%20%28206J%2FK.mol%29%2B3mole%5Ctimes%20%28205J%2FK.mol%29%5D)

Now we have to calculate the Gibbs free energy of reaction
.
As we know that,

At room temperature, the temperature is 500 K.


Therefore, the value of
for the reaction is -959.1 kJ
Answer:
The word radon is derived from radium, of which radon is gas. Early in its discovery it was also called radium emanation and niton, which comes from the Latin nitens, Since 1923, however, it has been called radon.
Answer : The dipole-dipole interaction.
Explanation : The kind of bond that is created by a weak electrical attraction between two polar molecules is dipole-dipole interaction.
The type of force which occurs between the positive end of one molecule and the negative end of another molecule: is dipole-dipole interaction.
For better understanding, please refer the attachment.
Answer: yes true
Explanation: 1. Toward the middle of a river, water tends to flow fastest; toward the margins of the river it tends to flow slowest. 2. In a meandering river, water will tend to flow fastest along the outside bend of a meander, and slowest on the inside bend.