Answer:
2.40 M
Explanation:
The molarity of a solution tells you how many moles of solute you get per liter of solution.
Notice that the problem provides you with the volume of the solution expressed in milliliters,
mL
. Right from the start, you should remember that you must convert this volume to liters by using the conversion factor
1 L
=
10
3
mL
Now, in order to get the number of moles of solute, you must use its molar mass. Now, molar masses are listed in grams per mol,
g mol
−
1
, which means that you're going to have to convert the mass of the sample from milligrams to grams
1 g
=
10
3
mg
Sodium chloride,
NaCl
, has a molar mass of
58.44 g mol
−
1
, which means that your sample will contain
unit conversion
280.0
mg
⋅
1
g
10
3
mg
⋅
molar mass
1 mole NaCl
58.44
g
=
0.004791 moles NaCl
This means that the molarity of the solution will be
c
=
n
solute
V
solution
c
=
0.004791 moles
2.00
⋅
10
−
3
L
=
2.40 M
The answer is rounded to three sig figs, the number of sig figs you have for the volume of the solution.
This the balanced equation based on the question

.
We then proceed with the following calculations
The answer is
is produced.
32g of oxygen is required to burn 4g of hydrogen.
Define molecular mass.
A specific molecule's mass is expressed in daltons and is known as the molecular mass (m) (Da or u). Due to the varying isotopes of an element that they contain, multiple molecules of the same substance can have distinct molecular weights.
The total atomic mass of every atom in a molecule, calculated using a scale with hydrogen, carbon, nitrogen, and oxygen having atomic masses of 1, 12, 14, and 16, respectively. For instance, water has a molecular mass of 18 (2 + 16), which consists of two hydrogen atoms and one oxygen atom. known also as molecular weight.
In ,2H2+O2-----> 2H2O
H 2 molecules have a mass of 2 g/mol.
The molecular weight of oxygen is 32 g/mol.
When the chemical equation is balanced,
To totally react, 32 g of oxygen are needed for every 22=4 g of hydrogen.
To know more about molecular mass use link below:
brainly.com/question/21334167
#SPJ1
Answer:
6 different frequencies
Explanation:
From energy level 1 to 2 is one frequency, from energy level 1 to 3 is one frequency and From energy level 1 to 4 is one frequency. So, we have a total of 3 frequencies for transition from energy level 1.
From energy level 2 to 3 is one frequency and from energy level 2 to 4 is one frequency. So, we have a total of 2 frequencies for transition from energy level 2.
From energy level 3 to 4 is one frequency.
So we have a total of 3 + 2 + 1 different frequencies = 6 different frequencies.
Note that the reverse process for each step produces the same frequency as the step in consideration.