Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
The heat required to raise the temperature of a certain mass of sample to a specific temperature change, we use the formula mCpΔT where m is mass, Cp is the specific heat of the substance and ΔT is the temperature change. In this case, we substitute and form 1.25 g x 0.057 cal/g C *20 C equal to 1.425 calories.
Answer:
The amount of energy released from the combustion of 2 moles of methae is 1,605.08 kJ/mol
Explanation:
The chemical reaction of the combustion of methane is given as follows;
CH₄ (g) + 2O₂ (g) → CO₂ (g) + 2H₂O (g)
Hence, 1 mole of methane combines with 2 moles of oxygen gas to form 1 mole of carbon dioxide and 2 moles of water vapor
Where:
CH₄ (g): Hf = -74.6 kJ/mol
CO₂ (g): Hf = -393.5 kJ/mol
H₂O (g): Hf = -241.82 kJ/mol
Therefore, the combustion of 1 mole of methane releases;
-393.5 kJ/mol × 1 + 241.82 kJ/mol × 2 + 74.6 kJ/mol = -802.54 kJ/mol
Hence the combustion of 2 moles of methae will rellease;
2 × -802.54 kJ/mol or 1,605.08 kJ/mol.