20600Cal
Explanation:
Given parameters:
Mass of water = 319.5g
Initial temperature = 35.7°C
Final temperature = 100°C
Unknown:
Calories needed to heat the water = ?
Solution:
The calories is the amount of heat added to the water. This can be determined using;
H = m c Ф
c = specific heat capacity of water = 4.186J/g°C
H is the amount of heat
Ф is the change in temperature
H = m c (Ф₂ - Ф₁)
H = 319.5 x 4.186 x (100 - 35.7) = 85996.56J
Now;
1kilocalorie = 4184J
85996.56J to kCal;
= 20.6kCal = 20600Cal
learn more:
Specific heat brainly.com/question/3032746
#learnwithBrainly
Answer:
chloroplast organelle
Answer. The photosynthesis process takes place in the chloroplast organelle in the growing tissues. As the chlorophyll pigment is available in the chloroplast organelle which is the main photosynthetic pigment, with the help of the molecules they capture the energy of light.
Explanation:
chloroplasts
In plants, photosynthesis takes place in chloroplasts, which contain the chlorophyll. Chloroplasts are surrounded by a double membrane and contain a third inner membrane, called the thylakoid membrane, that forms long folds within the organelle.
Answer:
a) 1.248 x 10⁷ kg
b) 1.248 x 10⁴ Mg
c) 1.248 x 10¹³ mg
d) 1.248 x 10⁴ ton
Explanation:
a) Since 1000 g = 1 kg we can convert grams to kg by multiplyig any given quantity in grams by the conversion factor ( 1 kg / 1000 g):
1.248 x 10¹⁰ g * (1 kg / 1000 g) = 1.248 x 10⁷ kg
b) Since 1 Mg = 1 x 10⁶ g, the conversion factor will be ( 1 Mg / 1 x 10⁶ g):
1.248 x 10¹⁰ g * ( 1 Mg / 1 x 10⁶ g) = 1.248 x 10⁴ Mg
c) Since 1 mg = 1 x 10⁻³ g, the conversion factor will be ( 1 mg / 1 x 10⁻³ g):
1.248 x 10¹⁰ g ( 1 mg / 1 x 10⁻³ g) = 1.248 x 10¹³ mg
d) Since 1 metric ton = 1000 kg and 1000 g = 1 kg, we can use these conversions factors: ( 1 kg / 1000 g) and (1 ton / 1000 kg):
1.248 x 10¹⁰ g * ( 1 kg / 1000 g) * ( 1 ton / 1000 kg) = 1.248 x 10⁴ ton
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>
What are you asking,
When?