Answer:

Explanation:
Hello!
In this case for the solution you are given, we first use the mass to compute the moles of CuNO3:

Next, knowing that the molarity has units of moles over liters, we can solve for volume as follows:

By plugging in the moles and molarity, we obtain:

Which in mL is:

Best regards!
Elements which composed of an equal amount of three components protons, neutrons and electrons are considered neutral elements. example of neutral elements are hydrogen, helium, lithium and beryllium...
<h3>
Answer:</h3>
2.47 × 10^24 molecules
<h3>
Explanation:</h3>
One mole of a compound contains molecules equivalent to the Avogadro's number, 6.022 × 10^23.
That is, 1 mole of a compound = 6.022 × 10^23 molecules
Therefore,
1 mole of Na₂CO₃ = 6.022 × 10^23 molecules
Thus, we can calculate the number of molecules in 4.1 moles of Na₂CO₃
we get,
= 4.1 moles × 6.022 × 10^23 molecules
= 2.47 × 10^24 molecules
Hence, 4.1 moles of Na₂CO₃ contains 2.47 × 10^24 molecules
Answer:
No. While gold would not react with a silver nitrate solution, nickel would.
Explanation:
Refer to the metal reactivity series.
Reactivity:
.
Gold is positioned after silver in the reactivity series, meaning that gold is typically less reactive than silver. Thus, gold would not react with a solution of silver ions to produce silver metal.
However, since nickel is positioned before silver in the reactivity series, it is expected that nickel would react with silver ions in this solution to produce silver metal.
Thus, if the silver nitrate solution comes into contact with the two rings, the nickel ring would likely react with the solution, the gold ring would not.
The solar system's outer planets include Jupiter, Saturn, Uranus and Neptune. Their arrangement does not have any effect on the rest of the planets in the solar system, except for the fact that these planets are not in resonance to each other.
Hope this helps!