PH = −log [H+] = − log [5.4 × 10−3] ≈ 2.27 or 2.3.
or basically 2
Answer: -
C. The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
The kinetic energy of gas molecules increase with the increase in the temperature of the gas. With the increase in kinetic energy, the gas molecules also move faster. Thus with the increase of temperature, the speed of the molecules increase.
Temperature of first hydrogen gas sample is 10 °C.
10 °C means 273+10 = 283 K
Thus first sample temperature = 283 K
The second sample temperature of the hydrogen gas is 350 K.
Thus the temperature is increased.
So both the kinetic energy and speed of molecules is more for the hydrogen gas sample at 350 K.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Hence the answer is C.
Answer:
Option D. 17.5
Explanation:
Equiibrium is: CO + 2H₂ ⇄ CH₃OH
1 mol of CO is in equibrium with 2 moles of hydrogen in order to make, methanol.
Initially we have 0.42 moles of CO and 0.42 moles of H₂
If 0.29 moles of CO remained, (0.42 - 0.29) = 0.13 moles have reacted.
So in the equilibrium we may have:
0.29 moles of CO, and (0.42 - 0.13 . 2) = 0.16 moles of H₂
Ratio is 1:2, if 0.13 moles of CO haved reacted, (0.13 . 2) moles have reacted of hydrogen
Finally 0.13 moles of methanol, are found after the equilibrium reach the end.
Let's make expression for KC: [Methanol] / [CO] . [Hydrogen]²
0.13 / (0.29 . 0.16²)
Kc = 17.5
Answer: Tissue
Explanation:
group of organized cells doing specific function is tissue group of organized tissues doing a specific function is an organ a group of organized organs doing a specific function is organ system and a group of organized organ systems doing a specific function would be an organism.
Thermal energy is dependent on the mass. If objects have a different mass then they will have a different thermal energies.