Answer:
a) The current is i = 1.2 A
b) The charge is Q = 17280 C
c) The energy is E = 43200 J
Explanation:
a) The current is given by the ohm's law wich is:
i = V/R = 3/2.5 = 1.2 A
b) Since the charge is steady we can use the following equation to find the charge amount in that time:
i = Q/t
Q = t*i
Where t is in seconds, so we have 4h * 3600 = 14400 s
Q = 1.2*14400 = 17280 C
c) The energy is the power delivered to the toy multiplied by the time:
P = 1.2*2.5 = 3 W
E = P*t = 3*14400 = 43200 J
Answer:
h = 1.8 m
Explanation:
The initial velocity of the glove, u =- 6 m/s
We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0
, h is the maximum height and a = -g

Hence, it will go up to a height of 1.8 m.
I think the correct answer from the choices listed above is the third option . Measuring the density of a substance <span>is most likely to produce the most precise results when trying to identify a substance since it can be compared to water and there are many data on it on books.</span>
0.118 m is the distance between the two protons.
Mass of proton = 1.6726 × 10⁻²⁷ kg
Weight of proton= 1.6726 × 10⁻²⁷ x 9.81 N
= 1.6408 × 10⁻²⁶ N
Charge of proton = 1.602 × 10⁻²⁹ C
The force between two protons = kq²/r² where, K is a proportionality
constant, q is a charge of proton and
r is the distance between two protons.
= 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
To calculate distance :
Weight of proton= Force between protons
⇒ 1.6408 × 10⁻²⁶ N = 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
⇒ r = 0.118m
Therefore, 0.118 m is the distance between the two protons.
Learn more about electrostatic force here:
brainly.com/question/18108470
#SPJ4
We can get water from the sweat and exhaled breath of the people present in the space station.
<h3>How would you get water?</h3>
We can get water from the sweat and exhaled breath. The water we drink is recycled from the sweat and exhaled breath of the people present in the space station which was collected through condensation on the Space Station's walls.
So we can conclude we can get water from the sweat and exhaled breath of the people present in the space station.
Learn more about water here: brainly.com/question/1313076
#SPJ1