Inertia is what keeps everything moving, so if it didn't exist, the balls wouldn't keep going when they are kicked, or thrown.
c. The Moon is positioned directly between the earth and the sun is the statement that does not result in an eclipse.
Explanation:
- The Sun is completely blocked in a solar eclipse because the Moon passes between Earth and the Sun.
- it is just the right distance away from Earth, the Moon can fully blocks the Sun's light from Earth's perspective
<span>Reduce energy use.
Change the way you think about transportation. Walk or bike whenever possible.
Insulate your home. Insulate yourself and your home.
Make every drop count.
</span>Cool wash and hang to dry.
<span>Switch to "green power.
</span>Recycle.
Answer:
20 degrees.
Explanation:
From Snell’s law of refraction:
sinθ1•n1 = sinθ2•n2
where θ1 is the incidence angle, θ2 is the refraction angle, n1 is the refraction index of light in medium1, and n2 is the refraction index for virgin olive oil. The incidence angle of the red light is θ1 = 30 degrees.
The red light is in air as medium1, so n1 (air) = 1.00029
So, to find θ2, the refracted angle:
sinθ1•1.00029 = sinθ2•1.464
sin(30)•1.00029 / 1.464 = sinθ2
0.5•1.00029 / 1.464 = sinθ2
sinθ2 = 0.3416291
θ2 = arcsin(0.3416291)
θ2 = 19.976 degrees
To the nearest degree,
θ2 = 20 degrees.
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s