Answer:
Use equation for kinetic energy: Ek=mV²/2
m=700 kg
V=10m/s
Ek=700kg*100m²7s²/2
Ek=35000 J=35kJ
Explanation:
Hope this helps you
Do mark me as brainliest
<u>D.</u>
For every action ther is an equal and opposite reaction.
equal in force, opposite in direction
Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
The height at time t is given by
h(t) = -4.91t² + 34.3t + 1
When the ball reaches maximum height, its derivative, h'(t) = 0.
That is,
-2(4.91)t+34.3 = 0
-9.82t + 34.3 = 0
t = 3.4929 s
Note that h''(t) = -9.82 (negative) which confirms that h will be maximum.
The maximum height is
hmax = -4.91(3.4929)² + 34.3(3.4929) + 1
= 60.903 m
Answer:
The ball attains maximum height in 3.5 s (nearest tenth).
The ball attains a maximum height of 60.9 m (nearest tenth)
Answer:
ρ = M / V = 2 g / .5 cm^3 = 4 g/cm^3