The magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
To find the answer, we need to know about the magnetic field inside the solenoid.
<h3>What's the expression of magnetic field inside a solenoid?</h3>
- Mathematically, the expression of magnetic field inside the solenoid= μ₀×n×I
- n = no. of turns per unit length and I = current through the solenoid
<h3>What's is the magnetic field inside the solenoid here?</h3>
- Here, n = 290/32cm or 290/0.32 = 906
I= 0.3 A
- So, Magnetic field= 4π×10^(-7)×906×0.3 = 3.4×10^(-4) T.
Thus, we can conclude that the magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
Learn more about the magnetic field inside the solenoid here:
brainly.com/question/22814970
#SPJ4
Solution :
Given data is :
Density of the milk in the tank,
Length of the tank, x = 9 m
Height of the tank, z = 3 m
Acceleration of the tank,
Therefore, the pressure difference between the two points is given by :
Since the tank is completely filled with milk, the vertical acceleration is
Therefore substituting, we get
Therefore the maximum pressure difference in the tank is Δp = 47.87 kPa and is located at the bottom of the tank.
Use of lubricant
Use of ball bearers
Use of streamlined body
Use of graphite
Answer:
Explanation:
<u>Accelerated Motion
</u>
When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by
where a is the acceleration, and vo is the initial speed
.
The train has two different types of motion. It first starts from rest and has a constant acceleration of for 182 seconds. Then it brakes with a constant acceleration of until it comes to a stop. We need to find the total distance traveled.
The equation for the distance is
Our data is
Let's compute the first distance X1
Now, we find the speed at the end of the first period of time
That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0
Computing the second distance
The total distance is
This is a statement not a question .