Answer:
The physical properties of a solution are different from those of the pure solvent. ... Colligative properties are those physical properties of solutions of nonvolatile solutes that depend only on the number of particles present in a given amount of solution, not on the nature of those particles.
 
        
             
        
        
        
Answer:
0.0164 g
Explanation:
Let's consider the reduction of silver (I) to silver that occurs in the cathode during the electroplating.
Ag⁺(aq) + 1 e⁻ → Ag(s)
We can establish the following relations.
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant)
- 1 mole of Ag(s) is deposited when 1 mole of electrons circulate.
- The molar mass of silver is 107.87 g/mol
The mass of silver deposited when a current of 0.770 A circulates during 19.0 seconds is:

 
        
             
        
        
        
Before proceeding, we should write the reaction equation to better understand what is happening:
2AgNO₃ + Na₂S → Ag₂S + 2NaNO₃
Now, we may apply the law of conservation of mass, due to which the total mass before a chemical reaction is equivalent to the total mass after a chemical reaction. Therefore:
Mass of silver nitrate + mass of sodium sulfide = mass of silver sulfide + mass of sodium nitrate
Mass of silver nitrate + 156.2 = 595.8 + 340
Mass of silver nitrate = 779.6 grams
        
             
        
        
        
Explanation:
1. Electrons surround the nucleus in defined regions called orbits.
2. The shells further away from the nucleus are larger and can hold more electrons.
3. The shells closer to the nucleus are smaller and can hold less electrons.
4. The closest shell (closest to the nucleus) can hold a maximum of two electrons.
5. Once the first shell is full, the second shell begins to fill. It can hold a maximum of eight electrons.
6. Once the second shell is full, the third shell begins to fill.
7. Once the third shell contains Eighteen electrons, the fourth shell begins to fill.
8. The arrangement of electrons in shells around the nucleus is referred to as an atom's electronic configuration.
 
        
             
        
        
        
To solve this problem,
we can use the Henderson-Hasselbalch Equation which relates the pH to the measure
of acidity pKa. The equation is given as:<span>
<span>pH = pKa + log ([base]/[acid])                ---> 1</span></span>
Where,
[base] = concentration
of C2H3O2
in molarity or moles
<span>[acid] = concentration of  HC2H3O2 in molarity or moles</span>
 
For the sake of easy calculation, let us assume that:
[base] = 1
[acid] = x
<span>
Therefore using equation 1,
4.24 = 4.74 + log (1 / x) 
<span>log (1 / x) = - 0.5
1 / x = 0.6065 </span></span>
x =
1.65<span>
The required ratio of C2H3O2 /HC2H3O2 <span>
is 1:1.65 or 3:5. </span></span>