Answer:
C) The molecules become separated from each other.
Explanation:
Answer:
The molar solubility of lead bromide at 298K is 0.010 mol/L.
Explanation:
In order to solve this problem, we need to use the Nernst Equaiton:
![E = E^{o} - \frac{0.0591}{n} log\frac{[ox]}{[red]}](https://tex.z-dn.net/?f=E%20%3D%20E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D)
E is the cell potential at a certain instant, E⁰ is the cell potential, n is the number of electrons involved in the redox reaction, [ox] is the concentration of the oxidated specie and [red] is the concentration of the reduced specie.
At equilibrium, E = 0, therefore:
![E^{o} = \frac{0.0591}{n} log \frac{[ox]}{[red]} \\\\log \frac{[ox]}{[red]} = \frac{nE^{o} }{0.0591} \\\\log[red] = log[ox] - \frac{nE^{o} }{0.0591}\\\\[red] = 10^{ log[ox] - \frac{nE^{o} }{0.0591}} \\\\[red] = 10^{ log0.733 - \frac{2x5.45x10^{-2} }{0.0591}}\\\\](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20%20%3D%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%5C%5C%5C%5Clog%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%3D%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%20%5C%5C%5C%5Clog%5Bred%5D%20%3D%20%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%7D%20%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log0.733%20-%20%20%5Cfrac%7B2x5.45x10%5E%7B-2%7D%20%20%7D%7B0.0591%7D%7D%5C%5C%5C%5C)
[red] = 0.010 M
The reduction will happen in the anode, therefore, the concentration of the reduced specie is equivalent to the molar solubility of lead bromide.
Biuret reagent will indicate the presence of protein in a given sample. It is also known as the Piotrowski's test. This reagent consists of copper (II) sulfate and sodium hydroxide. It detects peptide bonds by the reaction of the copper ions in an alkaline solution. The copper ions would form violet colored complexes when peptide is present in the solution. From this test, concentration can be calculated since the intensity of the color depends on the amount of peptide bonds and according to the Beer-Lambert law concentration and the absorption of light is proportional. The concentration is calculated by a spectrophotometric technique at a wavelength of 540 nm.
The net amount of energy produced can be obtained from a table of enthalpy change of formation, available online.
The enthalpy change of formation indicate how much energy the 1 mole of the product (H2O) has relative to the elemental reactants (H2 and O2). In other words, the "lost" energy equals the heat/energy released.
For water (H2O), this value is -285.8 if the final product is a liquid under standard conditions, and -241.82 if the product is in gas form which contains some energy that could be further released. This means that if the final product (H2O) is in liquid form, energy released is 285.8 kJ/mol.
Since water is in liquid form under standard conditions, the first value (285.8 kJ/mol) is generally appropriate.