Answer: The new volume be if you put it in your freezer is 1.8 L
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

The new volume be if you put it in your freezer is 1.8 L
Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M
The best way to accurately determine the pair with the highest electronegativity difference is by using their corresponding electronegativity values. For the each of the choices, the difference is:
A. H-S = 2.5 - 2.1 = 0.4
B. H-Cl = 3 - 2.1 = 0.9
C. N-H = 3 - 2.1 = 0.9
D. O-H = 3.5 - 2.1 = 1.4
E. C-H = 2.5 - 2.1 = 0.4
As show, D. has the highest difference. Without looking at their values, you can also determine the pair with the highest difference by taking note of the trend of electronegativity on the periodic table. Electronegativity increases as you go right a group and up a period. This makes oxygen the most electronegative element among the other elements paired with hydrogen.
Answer:
6L
Explanation:
<em>if it's 3L per 200kPa</em>
then it would be;
4L per 300kPa
5L per 400kPa
6L per 500kPa
that's how i'd work it out in my head, hope it helps, but not sure though!