1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodka [1.7K]
3 years ago
6

1. Which statement about subatomic particles is not true?

Physics
1 answer:
igomit [66]3 years ago
8 0

1. Protons and neutrons have the same charge.

Protons have positive charge, equal to e=+1.6\cdot 10^{-19} C, while neutrons have zero charge.

2. mass number

The mass number of an atom is equal to the sum of protons and neutrons inside its nucleus.

3. Atoms are made up of smaller particles.

According to Dalton's theory, atoms are the smallest particles that make matter, and they are indivisible and indestructible, so they are NOT made up of smaller particles.

4. a solid sphere

In Dalton's theory, atoms are not made of smaller particles, so we can think them as solid spheres.

5. J. J. Thomson

In his experiment with cathode ray tubes, JJ Thomson demonstrated the existance of the electrons, which are negatively charged particles inside the atom. In his model of the atom (plum-pudding model), Thomson thought the atom consists of a uniform positive charge and the electrons are located inside this positive charge.

6. An electron has the same amount of energy in all orbitals.

In fact, each orbital corresponds to a different energy level: the farther the orbital from the nucleus, the higher the energy of the electrons contained in that orbital.

7. A hydrogen atom in heavy water has an extra neutron.

Heavy water is a type of water that contains deuterium, which is an isotope of the hydrogen consisting of one proton and one neutron (so, one extra neutron).

8. The glowing beam was always deflected by charged plates

In his cathode's ray tube experiment, Thomson shows that the beam of unknown particles (= the electrons) were deflected by charge plates, so the particles had to be also electrically charged.

9. electrons move to a lower energy level

When electrons move from a higher energy level to a lower energy, they emit a photon (light) of energy equal to the difference in energy between the two energy levels.

10. orbital

In quantum mechanics, electrons in the atom are not precisely located, since we cannot determine their exact position and velocity at the same time. Therefore, we can only describe regions of space where the electrons have a certain probability to be found, and these regions of space are called orbitals.

11. 14

According to Dalton's theory, the proportions of the reactants must be respected in order to form the same compound. Therefore, we can write:

2 g: 4 g = X : 28 g\\X=\frac{2 g \cdot 28 g}{4 g}=14 g

12. negative charge, found outside the nucleus

Electrons are particles with negative charge of magnitude e=-1.6\cdot 10^{-19}C that orbit around the nucleus. The nucleus, instead, consists of protons (positively charged, with charge opposite to the electron) and neutrons (neutrally charged).

13. move from higher to lower energy levels

When electrons move from a higher energy level to a lower energy inside a neon atom, they emit a photon (which is light) whose energy is equal to the difference in energy between the two energy levels.

14. atomic number from its mass number

In fact:

- the atomic number of an atom (Z) is equal to the number of protons inside the nucleus

- the mass number of an atom (A) is equal to the sum of protons+neutrons inside the nucleus

Therefore, we can find the number of neutrons in the nucleus by calculating the difference between A and Z:

Number of neutrons = A - Z

15. None of them

None of these examples is a good analogy to describe the location of an electron in an atomic orbital: in fact, the position of an electron in an orbital cannot be precisely described, we can only describe the probability to find the electron in a certain position, and none of these example is an analogy of this model.

You might be interested in
A car is moving at 10 m/s to the right. It accelerates for 10 s after which it is moving at 5 m/s to the left. What was the car'
NNADVOKAT [17]

Answer:

Acceleration, a=-1.5\ m/s^2

Explanation:

It is given that,

Initial velocity of the car, u = 10 m/s (in right)

Final velocity of the car, v = -5 m/s (in left)  

Time taken, t = 10 s

Let a is the acceleration of the car. It can be calculated using the equation of kinematics. The equation is as :

v=u+at

a=\dfrac{v-u}{t}

a=\dfrac{-5-10}{10}    

a=-1.5\ m/s^2

So, the acceleration of the car is -1.5\ m/s^2. Hence, this is the required solution.

6 0
3 years ago
When a 12 N horizontal force is applied to a box on a horizontal tabletop, the box remains at rest. The force of friction acting
Mrrafil [7]

Answer:

12N

Explanation:

when a force is applied to a body but still stays at rest or moves at a constant speed , the frictional force is equal to the force applied

3 0
3 years ago
A psychologist studies if internet uses causes isolation
Degger [83]
A) experimental because he isn’t sure and is testing out
4 0
3 years ago
A 23 kg body is moving through space in the positive direction of an x axis with a speed of 130 m/s when, due to an internal exp
babymother [125]

Answer:

a) Vx = 1088m/s

b) Vy = -162.93m/s

c) 5246745J

Explanation:

Mass of unbroken body = 23kg

Its velocity along +ve X-axis = 130m/s

Mass of first broken body, m1= 9.4kg

Its velocity along +ve X-axis = 130m/s

Nass of 2nd broken body, m2 = 6.1kg

Its velocity long-lived X - axis = -550m/s

Mass of 3rd broken body = ?

m3 = (23 - 9.4 - 6.1)kg

m3 = 7.5kg

Let velocity along the x-axis = Vx

Let the velocity along the x-axis = Vy

Applying law of conservation of momentum along x-axis

a) m1×0 + m2×(-550) + m3×(Vx) =M × 130

9.4 × 0 + 6.1× (-550) + 7.5(Vx) = 23 ×130

0 + (-5170) + 7.5Vx = 2990

2990 + 5170 = 7.5Vx

8160 = 7.5Vx

Vx = 8160/7.5

Vx = 1088m/s

b) Aplying conservation of momentum along the x-axis

(m1×130) + (m2 × 0) + (m3× Vy) = 0

(9.4 × 130) + (6.1 ×550) + 7.5Vy = 0

1222 + 0 + 7.5Vy = 0

1222 = -7.5Vy

Vy = 1222/(-7.5)

Vy = -262.93m/s

c) The energy released or change in KE is given by:

1/2[(m1v1^2) + (m2v2^2) +(m3Vx^2) ]= MV^2

Change in KE = 1/2[ 9.4× 130^2 + 6.1 × 550^2 + 7.5 × 1088^2 ] - 1/2(23 × 130^2)

Change in KE = 1/2[158860 + 1845250 + 8878080] - 1/2[388700]

Change in KE = 5441095 - 194350

Change in KE = 5246745J

4 0
3 years ago
What color do glacier appear if they are moving towards us?
kirill [66]

Answer:

Subcategories: Ice field

Explanation:

Glacier ice is blue because the red (long wavelengths) part of white light is absorbed by ice and the blue (short wavelengths) light is transmitted and scattered. The longer the path light travels in ice, the more blue it appears.

3 0
3 years ago
Other questions:
  • Which change will always result in an increase in the gravitational force between two objects?
    5·2 answers
  • Please help
    10·1 answer
  • Q 24, 25, 26 i dont get them and need answers for it
    7·1 answer
  • Which situation describes the best example of rotational motion?
    8·2 answers
  • What is the net force if u start to pull instead of pushing in
    6·1 answer
  • If we want to describe work we must have
    8·1 answer
  • Need help on this please
    8·1 answer
  • Se lanza una piedra de 3.00 N verticalmente hacia arriba desde el suelo. Se observa que, cuando está 15.0 m sobre el suelo, viaj
    11·1 answer
  • If the frequency of an FM wave is 8.85 × 10¥ hertz, what is the period of the FM wave?
    7·2 answers
  • a 1.5 kg ball is thrown vertically upward with an initial speed of 15 m/s. if the initial potential energy is taken as zero, fin
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!