Explanation:
Given that,
Electric field = 5750 N/C
Charge 
Distance = 5.50 cm
(a). When the charge is moved in the positive x- direction
We need to calculate the change in electric potential energy
Using formula of electric potential energy



Put the value into the formula


The change in electric potential energy is 
(b). When the charge is moved in the negative x- direction
We need to calculate the change in electric potential energy
Using formula of electric potential energy



Put the value into the formula


The change in electric potential energy is 
Hence, This is the required solution.
<h3>Answer</h3>
At a high temperature above 20° oxygen solubility starts to decrease.
<h3>Explanation</h3>
Oxygen, O2 is a very essential component of water as we can see in its chemical formula h2O.
The solubility of oxygen decreases as temperature increases. This means that warmer water will have less dissolved oxygen than does cooler water.
<h3>Other factors that affects oxygen solubility in water</h3>
Salt levels
higher the salt levels in water, lower will be oxygen in it.
Pressure
Water at lower altitudes can hold more dissolved oxygen than water at higher altitudes because dissolved oxygen will increase as pressure increases.
Answer:
Hope it helps..
Explanation:
Let n be the number of the vernier scale division which coincides with the main scale division. Rotate the vernier caliper 90° and repeat the steps 4 and 5 for measuring the internal diameter in perpendicular direction. To measure the depth, find the total reading and zero correction.
PLEASE MARK ME AS BRAINLIEST
Answer:
40m
Explanation:
let's calculate the acceleration first
force = mass × acceleration
rearranging to find acceleration:
acceleration = force ÷ mass
force = 25N, mass = 5.0kg
acceleration = 25 ÷ 5 = 5ms^-2
we can now use the formula v^2 = u^2 + 2as where v = final velocity, u = initial velocity, a = acceleration and s = distance
rearranging v^2 = u^2 + 2as the distance is
s = (v^2 - u^2) ÷ 2a
v = 20, u = 0, a = 5
s = (20^2 - 0^2) ÷ (2 × 5) = 40m
the distance is 40m
Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.