Be heavier
density=mass÷volume
if two items have the same size they have the same volume so the heavier one will be the denser one
Answer:
temperature measures heat - the unit is Celsius - and it is measured with a thermometer.
length is measuring how long, tall, or wide something is - the base unit it metres - and it is measured with a ruler or a metre stick
volume is measuring the quantity of a three dimensional space - the unit is cubic centimetre - you find volume by taking the measurements with a ruler
mass is measuring how much space something takes up/ weight - unit is the gram - you use a scale
Answer:
v₂ = 306.12 m/s
Explanation:
We know that the volume flow rate of the water or any in-compressible liquid remains constant throughout motion. Therefore, from continuity equation, we know that:
A₁v₁ = A₂v₂
where,
A₁ = Area of entrance pipe = πd₁²/4 = π(0.016 m)²/4 = 0.0002 m²
v₁ = entrance velocity = 3 m/s
A₂ = Area of nozzle = πd₂²/4 = π(0.005 m)²/4 = 0.0000196 m²
v₂ = exit velocity = ?
Therefore,
(0.0002 m²)(3 m/s) = (0.0000196 m²)v₂
v₂ = (0.006 m³/s)/(0.0000196 m²)
<u>v₂ = 306.12 m/s</u>
Answer:
Hi
Final temperature = 250.11 °C
Final volume = 0,1 m3.
Process work = 0
Explanation:
The specific volume in the initial state is: v = 0.1m3/2 kg = 0.05 m3/kg.
This volume is located between the volumes as saturated liquid and saturated steam at 20 °C. For this reason the water is initially in a liquid vapor mixture. As the piston was blocked the volume remains constant and the process is isometric, also known as isocoric process, so the final temperature will be the water temperature at a saturated steam of v=0.05m3/kg, which is obtained by using steam tables for water, by linear interpolation. As follows, using table A-4 of the Cengel book 7th Edition:
v=0.05 m3/kg
v1=0.057061 m3/kg
T1=242.56°C
v2=0.049779 m3/kg
T2=250.35°C
T=
The process work is zero because there is no change in volume during heating:
W=PxΔv=Px0=0
where
W=process work
P=pressure
Δv=change of volume, is zero because the piston was blocked so the volume remains constant.