Answer:
The velocity of the ball after 5 seconds will be 49 m/s
Explanation:
<em>v = final velocity</em>
<em>u = initial velocity</em>
<em>g = acceleration due to gravity</em>
<em>t = time</em>
Initial velocity of the ball = 0 (As the ball is dropped from rest )
Acceleration due to gravity = 9.8 m/s
Time taken = 5 sec
As the acceleration due to gravity is constant in both the cases we can use the equations of motion in order to solve this question
Part I :- As we already know the values of u,g,ant t we can use the first equation of motion in order to find v
Part II :- As we know the values of u, t , g we can use the second equation of motion in order to find s.
Velocity of the ball after 5 seconds
Distance covered by the ball in 5 sec
Answer
Given,
Magnetic field, B = 0.0000193 T
speed, v = 121 m/s
mass of electron, m = 9.11 x 10⁻³¹ Kg
charge of electron, q = 1.6 x 10⁻¹⁹ C
radius of the electron path, r = ?


r = 3.64 x 10⁻⁵ m
We know frequency is inverse of time period
d = v t



t = 1.889 x 10⁻⁶ s.
now, frequency



Answer:
F = 0.483 N
Explanation:
Initial momentum, 
Final momentum, 
Time, t = 31 s
We need to find the force of a lead ball. We can use here the impulse momentum theorem.

F is force

So, the force is 0.483 N.
True.
Density = mass / volume, Unit = g / cm³.
This is a common unit because of its affiliation with the SI unit and because that also our popular liquid which is water = 1 g/cm³
Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s

Solving for F,

And since we are interested in the magnitude only,
F = 106.7 N