Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

"D. Both have electrons that orbit the atomic nucleus in a similar way ." is not shared by Bohr's model and the modern atomic model.
Hope this helps,
Davinia.
Answer:
- <em>Abbie’s acceleration is (1/2) Zak’s acceleration.</em>
Explanation
1. <u>Data</u>:
a) ω = constant
b) Abbie: r₁ = 1 m
c) Zak: r₂ = 2 m
d) Ac₁ = ? Ac₂
2. <u>Formulae</u>
3. <u>Solution</u>:
a) Abbie:
b) Zack:
c) Divide Ac₁ / Ac₂
- Ac₁ / Ac₂ = ω² (1m) / [ω² (2m) ] = 1/2
⇒ Ac₁ = (1/2) Ac₂ = Ac₂ / 2 = 0.5 Ac₂
Answer:
The mass of the another block is 60 kg.
Explanation:
Given that,
Mass of block M= 100 kg
Height = 1.0 m
Time = 0.90 s
Let the mass of the other block is m.
We need to calculate the acceleration of each block
Using equation of motion

Put the value into the formula



We need to calculate the mass of the other block
Using newton's second law
The net force of the block M

....(I)
The net force of the block m

Put the value of T from equation (I)



Put the value into the formula


Hence, The mass of the another block is 60 kg.
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png
Solution:
We need to find the magnitude of the resultant on both x- and y-axis.
x-axis) The resultant on the x-axis is

in the positive direction.
y-axis) The resultant on the y-axis is

in the positive direction.
Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using

from which we find