Answer: 12) 1.07 m/s (right) 13) 4.05 m/s 14) 73 m/s 15) 10.9 m/s
Explanation:
12) Conservation of momentum. Momentum is the produce of mass and velocity.
13(2) + 15(-5) = 13(-5) + 15v
v = 1.06666... ≈ 1.07 m/s (right)
13) 18(9) + 22(0) = 18v + 22v
v = 18(9)/40 = 4.05 m/s
14) 0.65(35) + 0.08(0) = 0.65(26) + 0.08v
v = 73.125
15) This is a bit trickier. Let's ASSUME you jump off at 7 m/s relative to the truck. Doing this, we can assume that the reference frame is moving along with the truck at 10 m/s
the conservation of momentum equation becomes
600(0) + 80(0) = 600v + 80(-7)
v = 0.9333333... m/s
adding back the velocity of the reference frame means the truck is now traveling.
10.9333333... ≈ 10.9 m/s
Answer:
The correct option is A = 1960 N/m²
Explanation:
Given that,
Mass m= 20,000kg
Area A = 100m²
Pressure different between top and bottom
Assume the plane has reached a cruising altitude and is not changing elevation. Then sum the forces in the vertical direction is given as
∑Fy = Wp + FL = 0
where
Wp = is the weight of the plane, and
FL is the lift pushing up on the plane.
Let solve for FL since the mass of the plane is given:
Wp + FL = 0
FL = -Wp
FL = -mg
FL = -20,000× -9.81
FL = 196,200N
FL should be positive since it is opposing the weight of the plane.
Let Equate FL to the pressure differential multiplied by the area of the wings:
FL = (Pb −Pt)⋅A
where Pb and Pt are the static pressures on bottom and top of the wings, respectively
FL = ∆P • A
∆P = FL/A
∆P = 196,200 / 100
∆P = 1962 N/m²
∆P ≈ 1960 N/m²
The pressure difference between the top and bottom surface of each wing when the airplane is in flight at a constant altitude is approximately 1960 N/m². Option A is correct
Answer:
D. 12 cm
Explanation:
A node is a point on a standing wave that does not vibrate.
The nodes of a standing wave are shown in the following sketch.
The red dots are the nodes of the standing wave.
It is observed that the distance between two adjacent nodes is half the wavelength of the wave.
Therefore, if the wavelength of the wave is 24 cm, then the distance from one node to the net must be 24 / 2 = 12 cm.
Hence, choice D is the correct answer.
Explanation:
a. " for every action there is an equal and opposite reaction".
b. The electric fan does not stop moving just after the switch turns off because of rational inertia force.
c. The force applied to first vehicle is 120N.
d. In my view it doesn't support the law of conservation of momentum. Momentum of 1 and 2 object before the collision is equal to the total momentum of two object after collision.