P.E = mgh
This is the formula for potential energy.
This is where m is mass, g is the acceleration due to gravity, and h is height.
All you have to do is multiply all these numbers together.
Answer:
hey mate
answer is probably voltage as per me
as
Explanation:
Voltage, electric potential difference, electric pressure or electric tension is the difference in electric potential between two points, which is defined as the work needed per unit of charge to move a test charge between the two points
Answer:
92.81 psia.
Explanation:
The density of water by multiplying its specific gravity by the density of sea water.
SG = density of sea water/density of water
ρ = SG x ρw
1 kg/m3 = 62.4 lbm/ft^3
= 1.03 * 62.4
= 64.27lbm/ft^3.
The absolute pressure at 175 ft below sea level as this is the location of the submarine.
P = Patm +ρgh
= 14.7 + 64.27 * 32.2 * 175
Converting to pound force square inch,
= 14.7 + 64.27 * (32.2ft/s^2) * (175ft) * (1lbf/32.2lbm⋅ft/s^2) * (1ft^2/144in^2 )
= 14.7 + 78.11 psia
= 92.81 psia.
4200 N is the tension in the cable that pulls the elevator upwards.
The correct option is A.
<h3>What does tension ?</h3>
Tension is the force that is sent through a rope, thread, or wire whenever two opposing forces pull on it. Along the whole length of the wire, the tensile stress pulls equally on all objects at the ends. Every physical object that comes into contact with that other one exerts force on it.
<h3>Briefing:</h3>
We employ the following formula to determine the cable's tension.
Formula:
T = mg+ma............ Equation 1
Where:
T is the cable's tension.
M = Mass of the elevator and the Joey
Accelerating with a
g = Gravitational acceleration
Considering the query,
Given:
m = (300+60) = 360 kg
a = 2 m/s²
g = 9.8 m/s²
Substitute these values into equation 2
T = (360×9.8)+(360×2)
T = 3528+720
T = 4248 N
T ≈ 4200 to the nearest hundred.
To know more about Tension visit:
brainly.com/question/14177858
#SPJ1
Answer:
Block A has the greatest density.
Explaination:
Block A density:0.0625 kg/cm3
Block B density:0.020833 kg/cm3
Block C density:0.041667 kg/cm3