Answer:
1 .
2.
Explanation:
The more stable the ionic compound, the more is it lattice energy.
- The more the charge on the cation and the anion, the greater is the lattice energy.
- The less the size of the cation and the anion, the greater is the lattice energy.
Scandium oxide (
) is an oxide in which
behaves as cation and
behaves as anion.
The compounds which has higher lattice energy than scandium oxide are:
1 .
This is because the charge are same on the cation and the anion as in the case of the Scandium oxide but the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
2.
This is because the charge on the cation
is greater than that of
and also the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
Because of the protons connected to the Nitrogen oxide group giving it its positive charge.
The nitrogenous bases on the two strands of DNA pair up, purine with pyrimidine (A with T, G with C), and are held together by weak hydrogen bonds. Watson and Crick discovered that DNA had two sides, or strands, and that these strands were twisted together like a twisted ladder -- the double helix.Mar
Answer : The rate constant at 525 K is, 
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= ?
= activation energy for the reaction = 
R = gas constant = 8.314 J/mole.K
= initial temperature = 701 K
= final temperature = 525 K
Now put all the given values in this formula, we get:
![\log (\frac{K_2}{2.57M^{-1}s^{-1}})=\frac{1.5\times 10^5J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{701K}-\frac{1}{525K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B2.57M%5E%7B-1%7Ds%5E%7B-1%7D%7D%29%3D%5Cfrac%7B1.5%5Ctimes%2010%5E5J%2Fmol%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B701K%7D-%5Cfrac%7B1%7D%7B525K%7D%5D)

Therefore, the rate constant at 525 K is, 
B-10 = 19.9%
B-11 = 80.1%
Abundance of B10 = x
Abundance of B11= y
You know x+y = 1 because there are only the 2 isotopes.
Y= 1-x
10.01294x + 11.00931 (1-x) = 10.811
10.01294x + 11.00931 - 11.00931x = 10.811 - 0.99016x = -0.198
X = 0.200
Check:
10.01294(0.2) + 11.00931 (0.8) = 10.81
20% B10. 80% B11