Answer:
the final temperature of the tea is 7.39⁰C.
Explanation:
Given;
mass of the tea, m = 375 g
specific heat capacity of the tea, C = 4.184 JJ/g°C
initial temperature of the tea, t₁ = 95°C
the final temperature of the tea, t₂ = ?
Energy lost by the refrigerator, Q = 137,460 J
The energy lost by the refrigerator is given by the following formula;
-Q = mc(t₂ - t₁)
-137,460 =375 x 4.184(t₂ - 95°C)
-137,460 = 1569(t₂ - 95°C)

Therefore, the final temperature of the tea is 7.39⁰C.
Answer:
2 m/s and -2 m/s
Explanation:
The object travels with an angle of
60.0°
with the positive direction of the y-axis: this means that it lies either in the 1st quadrant (positive x) or in the 2nd quadrant (negative x).
If it lies in the 1st quadrant, the value of vx (component of v along x direction) is:

If it lies in the 2nd quadrant, the value of vx (component of v along x direction) is:

The answer is volt for this question.
I hope is correct if not I’m sorry.
Answer: 91.4 J
Explanation:
Kinetic energy is the energy possessed by a body due to virtue of its motion.
K.E. = 0.5 m v²
Mass of the continent is given, m = 1.819 × 10²¹ kg
Side of the block of continent, s = 4150 km = 4150000 m
Depth of the block of continent, d = 38 km = 38000 m
(Mass = density × volume
m = 2780 kg/m³× (4150 × 10³ m)²× 38 × 10³ m = 1.819 × 10²¹ kg)
The continent is moving at the rate of, v = 1 cm /year = 0.01 m / 31556926 s = 3.17 × 10⁻¹⁰ m/s
⇒ K.E. = 0.5 × 1.819 × 10²¹ kg × (3.17 × 10⁻¹⁰ m/s)²= 91.4 J
Hence, mass of the continent has 91.4 J of kinetic energy.